Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36770015

ABSTRACT

Superelastic nickel-titanium (NiTi) archwires have become the preferred archwire for orthodontic alignment and the levelling stage due to their ability to exert a light force on teeth throughout a wide range of tooth movement. The magnitude and trend of the force exerted on the malposed tooth is influenced by the orthodontist's consideration of the size and geometry of the NiTi archwire during orthodontic therapy. In this work, a novel approach of a short-term ageing treatment was utilized to modify the magnitude and trend of the bending force of a commercial superelastic NiTi archwire. The bending behavior of the superelastic NiTi archwire was altered by subjecting it to different temperatures in an ageing treatment for 15 min. The bending behavior of the aged NiTi archwire was examined using a three-point and three-bracket setup. The commercial NiTi archwire's bending forces in both the three-point and three-bracket configurations were successfully altered by the 15 min ageing treatment. During unloading in the three-bracket arrangement, the NiTi archwires aged at 490 °C or 520 °C exhibited a lower magnitude and more consistent force compared to the NiTi archwires aged at 400 °C or 430 °C. Ageing the archwire for 15 min at 490 °C produced a suitable size of Ni4Ti3 precipitate, which makes the wire more flexible during bending and reduces the unloading force in the three-bracket bending configuration. The short-term aged NiTi archwire could be used to enhance the force delivery trend to the malposed tooth by lowering the amplitude of the force delivered and sustaining that force throughout the orthodontic treatment duration.

2.
Materials (Basel) ; 15(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35269212

ABSTRACT

In recent years, the use of CFRP with titanium and/or aluminum to form materials for stacking has gained popularity for aircraft construction. In practice, single-shot drilling is used to create perfectly aligned holes for the composite-metal stack. Usually, standard twist drills, which are commonly available from tool suppliers, are used for practical reasons. However, existing twist drill bits exhibit rapid wear upon the drilling of composite-metal stack layers in single shot, due to the widely contrasting properties of the composite-metal stack, which causes poor surface quality. The stringent quality requirements for aircraft component manufacturing demands frequent drill bit replacement and thus incurs additional costs, a concern still unresolved for aircraft component manufacturers. Owing to highly contrasting properties of a composite-metal stack, it is obvious that standard twist drill cannot fulfil the rigorous drilling requirements, as it is pushed to the limit for the fabrication of high-quality, defect-free holes. In this work, customised twist drills of a tungsten carbide (WC) material with different geometric features were specially fabricated and tested. Twenty drill bits with customised geometries of varying chisel edge angle (30-45°), primary clearance angle (6-8°), and point angle (130-140°) were fabricated. The stacked-up materials used in this study was CFRP and aluminum alloy 7075-T6 (Al7075-T6) with a total thickness of 3.587 mm. This study aims to investigate the effect of twist drill geometry on hole quality using drilling thrust force signature as indicator. All drilling experiments were performed at spindle speed of 2600 rev/min and feed rate of 0.05 mm/rev. Design of experiments utilising response surface methodology (RSM) method was used to construct the experimental array. Analysis of variance (ANOVA) was used to study the effect of parameters and their significance to the thrust force and thus the hole quality. The study shows that the most significant parameter affecting the drilling thrust force and hole surface roughness is primary clearance angle, followed by chisel edge angle. Correlation models of CFRP thrust force (Y1), Al7075-T6 thrust force (Y2), CFRP hole surface roughness (Y3), Al7075-T6 hole surface roughness (Y4) as a function of the tool geometry were established. The results indicated that the proposed correlation models could be used to predict the performance indicators within the limit of factors investigated. The optimum twist drill geometry was established at 45° of chisel edge angle, 7° of primary clearance angle, and 130° of point angle for the drilling of CFRP/Al7075-T6 stack material in a single-shot process. The error between the predicted and actual experiment values was between 6.64% and 8.17% for the optimum drill geometry. The results from this work contribute new knowledge to drilling thrust force signature and hole quality in the single-shot drilling of composite-metal stacks and, specifically, could be used as a practical guideline for the single-shot drilling of CFRP/Al7075-T6 stack for aircraft manufacturing.

SELECTION OF CITATIONS
SEARCH DETAIL