Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38844450

ABSTRACT

As Coulomb drag near charge neutrality (CN) is driven by fluctuations or inhomogeneity in charge density, the topology should play an extremely important role. Interlinking Coulomb drag and topology could reveal how the system's nontrivial topology influences the electron-electron interactions at the quantum level. However, such an aspect is overlooked as most studies focus on symmetric drag systems without topology. To understand this topological aspect, we need to study Coulomb drag in an asymmetric system with a broken inversion symmetry and strong spin-orbit coupling (SOC). Here we experimentally demonstrate the energy-driven Coulomb drag in an asymmetric van der Waals heterostructure composed of black phosphorus and rhenium disulfide characterized by broken inversion symmetry. Temperature-dependent transport measurements near CN provide compelling evidence for the energy-driven Coulomb drag due to electron-hole coupling that is energetically favored in a broken-gap heterojunction, as confirmed by Hall coefficient sign reversal with temperature. Moreover, contrary to the symmetric devices, our results exhibit magnetic-field-free, i.e., topology-driven, Hall drag, revealing an intrinsic coupling between energy and charge modes. This is the manifestation of nonzero Berry curvature, akin to a magnetic field in momentum space, in a Rashba system, which arises from the SOC and broken inversion symmetry of the heterostructure.

2.
ACS Nano ; 18(18): 11978-11987, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38652759

ABSTRACT

The interplay between strong Coulomb interactions and kinetic energy leads to intricate many-body competing ground states owing to quantum fluctuations in 2D electron and hole gases. However, the simultaneous observation of quantum critical phenomena in both electron and hole regimes remains elusive. Here, we utilize anisotropic black phosphorus (BP) to show density-driven metal-insulator transition with a critical conductance ∼e2/h which highlights the significant role of quantum fluctuations in both hole and electron regimes. We observe a T-linear resistivity from the deep metallic phase to the metal-insulator boundary at moderate temperatures, while it turns to Fermi liquid behavior in the deep metallic phase at low temperatures in both regimes. An analysis of the resistivity suggests that disorder-dominated transport leads to T-linear behavior in the hole regime, while in the electron regime, the T-linear resistivity results from strong Coulomb interactions, suggestive of strange-metal behavior. Successful scaling collapse of the resistivity in the T-linear region demonstrates the link between quantum criticality and the T-linear resistivity in both regimes. Our study provides compelling evidence that ambipolar BP could serve as an exciting testbed for investigating exotic states and quantum critical phenomena in hole and electron regimes of 2D semiconductors.

3.
PLoS One ; 18(11): e0285992, 2023.
Article in English | MEDLINE | ID: mdl-37963157

ABSTRACT

Gul and Mohsin 2021 developed a new modified form of renowned "Half logistic" distribution introduced by Balakrishnan (1991) and named it half logistic-truncated exponential distribution (HL-TEXPD). Some mathematical characteristics are studied, including hazard function, Pth percentile, moment generating function and Shannon entropy. Simulation study is performed to examine the behaviour of parameter estimates. The proposed model is fitted on three real data sets to check its efficacy. Additionally, TTT (total time on test) plot is drawn to study the failure rate of the three data sets. The results verdict that HL-TEXPD can be efficiently utilized in the field of engineering and medical sciences based on the data sets under study contrary to the classical and baseline models.


Subject(s)
Computer Simulation , Statistical Distributions , Entropy
4.
Molecules ; 28(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37764237

ABSTRACT

Growing demand for sustainable wastewater treatment drives interest in advanced photocatalytic materials. Immobilized photocatalysts hold potential for addressing industrial wastewater organic pollutants, offering substantial surface area, agglomeration prevention, and easy removal. In this study, we successfully immobilized ZnO and carbon nanotubes onto a textile substrate through bilateral esterification and explored their effectiveness as a potent photocatalyst for degrading of commercial textile colorant reactive blue 4 (RB-4) colorant. Findings demonstrated significant improvements in photocatalytic performance upon integrating ZnO and CNTs into the fabric, coupled with chitosan immobilization. The immobilization process of ZnO and CNTs onto the substrate was elucidated through a proposed reaction mechanism, while the appearance of carbonyl peaks at 1719.2 cm-1 in the composite fabric further confirmed bilateral esterification. The as-developed immobilized nano-catalyst exhibited remarkable photocatalytic efficiency with an impressive 93.54% color degradation of RB-4. This innovative approach underscores the immense potential of the ternary immobilized (ZnO/fCNT/chitosan) composite fabric for efficient photocatalytic degradation in textile coloration processes. Exploring the early-stage development of immobilized photocatalysts contributes to safer and more eco-friendly practices, addressing pressing environmental challenges effectively.

5.
Adv Sci (Weinh) ; 9(26): e2202465, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35853245

ABSTRACT

Surface charge transfer doping (SCTD) using oxygen plasma to form a p-type dopant oxide layer on transition metal dichalcogenide (TMDs) is a promising doping technique for 2D TMDs field-effect transistors (FETs). However, patternability of SCTD is a key challenge to effectively switch FETs. Herein, a simple method to selectively pattern degenerately p-type (p+ )-doped WSe2 FETs via electron beam (e-beam) irradiation is reported. The effect of the selective e-beam irradiation is confirmed by the gate-tunable optical responses of seamless lateral p+ -p diodes. The OFF state of the devices by inducing trapped charges via selective e-beam irradiation onto a desired channel area in p+ -doped WSe2 , which is in sharp contrast to globally p+ -doped WSe2 FETs, is realized. Selective e-beam irradiation of the PMMA-passivated p+ -WSe2 enables accurate control of the threshold voltage (Vth ) of WSe2 devices by varying the pattern size and e-beam dose, while preserving the low contact resistance. By utilizing hBN as the gate dielectric, high-performance WSe2 p-FETs with a saturation current of -280 µA µm-1 and on/off ratio of 109 are achieved. This study's technique demonstrates a facile approach to obtain high-performance TMD p-FETs by e-beam irradiation, enabling efficient switching and patternability toward various junction devices.

6.
Phys Chem Chem Phys ; 23(44): 25284-25290, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34734939

ABSTRACT

Temperature-dependent electrical and magneto-transport measurements have been performed on devices composed of few layer (4L) graphene grown directly on SiO2/Si substrates using the CVD method. An intrinsic energy band-gap of 4.6 meV in 4L graphene is observed, which primarily dictates the current transport at T <50 K. Unusual temperature dependent electron-hole conduction asymmetry is observed at T >50 K, which can be explained in the framework of the defect scattering of relativistic charge carriers. Magneto-transport measurements reveal a weak localization effect sustainable till T >200 K. The coexistence of phonon mediated carrier mobility and defect induced weak localization effects in measuring devices suggests low disorder and impurity scattering.

7.
J Family Med Prim Care ; 10(3): 1473-1478, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34041196

ABSTRACT

AIM: The purpose of our study was to assess the presentation of COVID-19 disease in terms of clinical and radiological features in our population. METHODS: 64 RT-PCR documented COVID-19 patients were included in the study. Clinical, biochemical, and radiological data were collected and analyzed retrospectively from last week of March to 30th April 2020. RESULTS: Out of the 64 patients, 38 (59.4%) were males, 44 (68.7%) had a history of contact with COVID-19 positive patient. 26.6%patients were in the age group of 21-30 years. 53.1% patients were asymptomatic while as cough and fever were the most common symptoms in 21.8 and 20.3% patients, respectively. Anosmia was present in four patients. Hypertension and hypothyroidism were the most common comorbid illnesses among the study population in 9.4% patients each. Lymphopenia was present in 38% of patients CRP was increased in 83% patients, LDH in 90.2%, and ferritin in 51.5% of patients. 17 (26.6%) patients had bilateral disease in CT. RUL was the most common lobe involved in 18 (28.1%) patients. GGO and consolidation were seen in 22 (34.45) and 13 (20.3%) patients, respectively. Vessel enlargement was observed in 11 (17.2%) patients. All five lobes were involved in 9 (14.1%) patients. Five patients developed severe disease with respiratory comprise; two of them eventually died. CONCLUSION: The clinical and radiological characteristics of COVID-19 patients vary among different populations. Although there are no radiological features which seems to be characteristic of COVID-19, but CT helps in evaluation of the patients as many asymptomatic ones have some radiological findings suggestive of viral pneumonia.

10.
Nano Lett ; 20(5): 3978-3985, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32330042

ABSTRACT

The recent discovery of magnetic van der Waals (vdW) materials provides a platform to answer fundamental questions on the two-dimensional (2D) limit of magnetic phenomena and applications. An important question in magnetism is the ultimate limit of the antiferromagnetic layer thickness in ferromagnetic (FM)/antiferromagnetic (AFM) heterostructures to observe the exchange bias (EB) effect, of which origin has been subject to a long-standing debate. Here, we report that the EB effect is maintained down to the atomic bilayer of AFM in the FM (Fe3GeTe2)/AFM (CrPS4) vdW heterostructure, but it vanishes at the single-layer limit. Given that CrPS4 is of A-type AFM and, thus, the bilayer is the smallest unit to form an AFM, this result clearly demonstrates the 2D limit of EB; only one unit of AFM ordering is sufficient for a finite EB effect. Moreover, the semiconducting property of AFM CrPS4 allows us to electrically control the exchange bias, providing an energy-efficient knob for spintronic devices.

11.
ACS Appl Mater Interfaces ; 12(12): 14119-14124, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32108466

ABSTRACT

Recently, multivalued logic (MVL) circuits have attracted tremendous interest due to their ability to process more data by increasing the number of logic states rather than the integration density. Here, we fabricate logic circuits based on molybdenum telluride (MoTe2)/black phosphorus (BP) van der Waals heterojunctions with different structural phases of MoTe2. Owing to the different electrical properties of the 2H and mixed 2H +1T' phases of MoTe2, tunable logic devices have been realized. A logic circuit based on a BP field-effect transistor (FET) and a BP/MoTe2 (2H + 1T') heterojunction FET displays the characteristics of binary logic. However, a drain voltage-controlled transition from binary to ternary logic has been observed in BP FET- and BP/ MoTe2 (2H) heterojunction FET-based logic circuits. Also, a change from binary to ternary characteristics has been observed in BP/MoTe2 (2H)-based inverters at low temperature below 240 K. We believe that this work will stimulate the assessment of the structural phase transition in metal dichalcogenides toward advanced logic circuits and offer a pathway to substantialize the circuit standards for future MVL systems.

12.
Small ; 15(11): e1804885, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30730094

ABSTRACT

The finite energy band-offset that appears between band structures of employed materials in a broken-gap heterojunction exhibits several interesting phenomena. Here, by employing a black phosphorus (BP)/rhenium disulfide (ReS2 ) heterojunction, the tunability of the BP work function (Φ BP ) with variation in flake thickness is exploited in order to demonstrate that a BP-based broken-gap heterojunction can manifest diverse current-transport characteristics such as gate tunable rectifying p-n junction diodes, Esaki diodes, backward-rectifying diodes, and nonrectifying devices as a consequence of diverse band-bending at the heterojunction. Diversity in band-bending near heterojunction is attributed to change in the Fermi level difference (Δ) between BP and ReS2 sides as a consequence of Φ BP modulation. No change in the current transport characteristics in several devices with fixed Δ also provides further evidence that current-transport is substantially impacted by band-bending at the heterojunction. Optoelectronic experiments on the Esaki diode and the p-n junction diode provide experimental evidence of band-bending diversity. Additionally, the p+ -n-p junction comprising BP (38 nm)/ReS2 /BP(5.8 nm) demonstrates multifunctionality of binary and ternary inverters as well as exhibiting the behavior of a bipolar junction transistor with common-emitter current gain up to 50.

13.
ACS Appl Mater Interfaces ; 11(8): 8266-8275, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30698000

ABSTRACT

The broken-gap (type III) van der Waals heterojunction is of particular interest, as there is no overlap between energy bands of its two stacked materials. Despite several studies on straddling-gap (type I) and staggered-gap (type II) vdW heterojunctions, comprehensive understanding of current transport and optoelectronic effects in a type-III heterojunction remains elusive. Here, we report gate-tunable current rectifying characteristics in a black phosphorus (BP)/rhenium disulfide (ReS2) type-III p-n heterojunction diode. Current transport in this heterojunction was modeled using the Simmons approximation through direct tunneling and Fowler-Nordheim tunneling in lower- and higher-bias regimes, respectively. We showed that a p-n diode based on a type-III heterojunction is mainly governed by tunneling-mediated transport, but that transport in a type-I p-n heterojunction is dominated by majority carrier diffusion in the higher-bias regime. Upon illumination with a 532 nm wavelength laser, the BP/ReS2 type-III p-n heterojunction showed a photo responsivity of 8 mA/W at a laser power as high as 100 µW and photovoltaic energy conversion with an external peak quantum efficiency of 0.3%. Finally, we demonstrated a binary inverter consisting of BP p-channel and ReS2 n-channel thin film transistors for logic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...