Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Biol Res ; 57(1): 23, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38705984

ABSTRACT

Obesity, associated with the intake of a high-fat diet (HFD), and anxiety are common among those living in modern urban societies. Recent studies suggest a role of microbiome-gut-brain axis signaling, including a role for brain serotonergic systems in the relationship between HFD and anxiety. Evidence suggests the gut microbiome and the serotonergic brain system together may play an important role in this response. Here we conducted a nine-week HFD protocol in male rats, followed by an analysis of the gut microbiome diversity and community composition, brainstem serotonergic gene expression (tph2, htr1a, and slc6a4), and anxiety-related defensive behavioral responses. We show that HFD intake decreased alpha diversity and altered the community composition of the gut microbiome in association with obesity, increased brainstem tph2, htr1a and slc6a4 mRNA expression, including in the caudal part of the dorsomedial dorsal raphe nucleus (cDRD), a subregion previously associated with stress- and anxiety-related behavioral responses, and, finally, increased anxiety-related defensive behavioral responses. The HFD increased the Firmicutes/Bacteroidetes ratio relative to control diet, as well as higher relative abundances of Blautia, and decreases in Prevotella. We found that tph2, htr1a and slc6a4 mRNA expression were increased in subregions of the dorsal raphe nucleus in the HFD, relative to control diet. Specific bacterial taxa were associated with increased serotonergic gene expression in the cDRD. Thus, we propose that HFD-induced obesity is associated with altered microbiome-gut-serotonergic brain axis signaling, leading to increased anxiety-related defensive behavioral responses in rats.


Subject(s)
Anxiety , Brain-Gut Axis , Diet, High-Fat , Gastrointestinal Microbiome , Animals , Male , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/physiology , Anxiety/microbiology , Brain-Gut Axis/physiology , Rats , Rats, Sprague-Dawley , Obesity/microbiology , Obesity/psychology , Obesity/metabolism , Signal Transduction/physiology , Behavior, Animal/physiology
2.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585934

ABSTRACT

The infralimbic (IL) division of the medial prefrontal cortex (mPFC) is a crucial site for extinction of conditioned fear memories in rodents. Recent work suggests that neuronal plasticity in the IL that occurs during (or soon after) fear conditioning enables subsequent IL-dependent extinction learning. We therefore hypothesized that pharmacological activation of the IL after fear conditioning would promote the extinction of conditioned fear. To test this hypothesis, we characterized the effects of post-conditioning infusions of the GABAA receptor antagonist, picrotoxin, into the IL on extinction of auditory conditioned freezing in male and female rats. In four experiments, we found that picrotoxin injections performed immediately, 24 hours, or 13 days after fear conditioning reduced conditioned freezing to the auditory conditioned stimulus (CS) during both extinction training and extinction retrieval; this effect was observed up to two weeks after picrotoxin infusions. Interestingly, inhibiting protein synthesis inhibition in the IL immediately after fear conditioning prevented the inhibition of freezing by picrotoxin injected 24 hours later. Our data suggest that the IL encodes an inhibitory memory during the consolidation of fear conditioning that is necessary for future fear suppression.

3.
Front Behav Neurosci ; 18: 1352797, 2024.
Article in English | MEDLINE | ID: mdl-38370858

ABSTRACT

The regulation of fear memories is critical for adaptive behaviors and dysregulation of these processes is implicated in trauma- and stress-related disorders. Treatments for these disorders include pharmacological interventions as well as exposure-based therapies, which rely upon extinction learning. Considerable attention has been directed toward elucidating the neural mechanisms underlying fear and extinction learning. In this review, we will discuss historic discoveries and emerging evidence on the neural mechanisms of the adaptive regulation of fear and extinction memories. We will focus on neural circuits regulating the acquisition and extinction of Pavlovian fear conditioning in rodent models, particularly the role of the medial prefrontal cortex and hippocampus in the contextual control of extinguished fear memories. We will also consider new work revealing an important role for the thalamic nucleus reuniens in the modulation of prefrontal-hippocampal interactions in extinction learning and memory. Finally, we will explore the effects of stress on this circuit and the clinical implications of these findings.

4.
Brain Behav Immun ; 107: 1-15, 2023 01.
Article in English | MEDLINE | ID: mdl-36108946

ABSTRACT

Stress-related psychiatric disorders including anxiety disorders, mood disorders, and trauma and stressor-related disorders, such as posttraumatic stress disorder (PTSD), affect millions of people world-wide each year. Individuals with stress-related psychiatric disorders have been found to have poor immunoregulation, increased proinflammatory markers, and dysregulation of fear memory. The "Old Friends" hypothesis proposes that a lack of immunoregulatory inputs has led to a higher prevalence of inflammatory disorders and stress-related psychiatric disorders, in which inappropriate inflammation is thought to be a risk factor. Immunization with a soil-derived saprophytic bacterium with anti-inflammatory and immunoregulatory properties, Mycobacterium vaccae NCTC 11659, can lower proinflammatory biomarkers, increase stress resilience, and, when given prior to or after fear conditioning in a rat model of fear-potentiated startle, enhance fear extinction. In this study, we investigated whether immunization with heat-killed M. vaccae NCTC 11659 would enhance fear extinction in contextual or auditory-cued fear conditioning paradigms and whether M. vaccae NCTC 11659 would prevent stress-induced exaggeration of fear expression or stress-induced resistance to extinction learning. Adult male Sprague Dawley rats were immunized with M. vaccae NCTC 11659 (subcutaneous injections once a week for three weeks), and underwent either: Experiment 1) one-trial contextual fear conditioning; Experiment 2) two-trial contextual fear conditioning; Experiment 3) stress-induced enhancement of contextual fear conditioning; Experiment 4) stress-induced enhancement of auditory-cued fear conditioning; or Experiment 5) stress-induced enhancement of auditory-cued fear conditioning exploring short-term memory. Immunizations with M. vaccae NCTC 11659 had no effect on one- or two-trial contextual fear conditioning or contextual fear extinction, with or without exposure to inescapable stress. However, inescapable stress increased resistance to auditory-cued fear extinction. Immunization with M. vaccae NCTC 11659 prevented the stress-induced increase in resistance to auditory-cued fear extinction learning. Finally, in an auditory-cued fear conditioning paradigm exploring short-term memory and fear acquisition, immunization with M. vaccae did not prevent fear acquisition, either with or without exposure to inescapable stress, consistent with the hypothesis that M. vaccae NCTC 11659 has no effect on fear acquisition but enhances fear extinction. These data are consistent with the hypothesis that increased immunoregulation following immunization with M. vaccae NCTC 11659 promotes stress resilience, in particular by preventing stress-induced resistance to fear extinction, and may be a potential therapeutic intervention for trauma- and stressor-related disorders such as PTSD.


Subject(s)
Extinction, Psychological , Hot Temperature , Male , Rats , Animals , Rats, Sprague-Dawley , Fear
5.
Viruses ; 14(4)2022 03 25.
Article in English | MEDLINE | ID: mdl-35458404

ABSTRACT

Virus infection of adrenal glands can disrupt secretion of mineralocorticoids, glucocorticoids, and sex hormones from the cortex and catecholamines from the medulla, leading to a constellation of symptoms such as fatigue, dizziness, weight loss, nausea, and muscle and joint pain. Specifically, varicella zoster virus (VZV) can produce bilateral adrenal hemorrhage and adrenal insufficiency during primary infection or following reactivation. However, the mechanisms by which VZV affects the adrenal glands are not well-characterized. Herein, we determined if primary human adrenal cortical cells (HAdCCs) infected with VZV support viral replication and produce a proinflammatory environment. Quantitative PCR showed VZV DNA increasing over time in HAdCCs, yet no cell death was seen at 3 days post-infection by TUNEL staining or Western Blot analysis with PARP and caspase 9 antibodies. Compared to conditioned supernatant from mock-infected cells, supernatant from VZV-infected cells contained significantly elevated IL-6, IL-8, IL-12p70, IL-13, IL-4, and TNF-α. Overall, VZV can productively infect adrenal cortical cells in the absence of cell death, suggesting that these cells may be a potential reservoir for ongoing viral replication and proinflammatory cytokine production, leading to chronic adrenalitis and dysfunction.


Subject(s)
Cell Death , Herpes Zoster , Virus Diseases , Adrenal Cortex , Cell Death/immunology , Cell Death/physiology , Herpes Zoster/metabolism , Herpes Zoster/pathology , Herpesvirus 3, Human/physiology , Humans , Inflammation/metabolism , Interleukins/metabolism , Primary Cell Culture , Tumor Necrosis Factor-alpha/metabolism , Virus Replication
6.
Article in English | MEDLINE | ID: mdl-34759019

ABSTRACT

BACKGROUND AND OBJECTIVES: Compared with stroke controls, patients with varicella zoster virus (VZV) vasculopathy have increased amyloid in CSF, along with increased amylin (islet amyloid polypeptide [IAPP]) and anti-VZV antibodies. Thus, we examined the gene expression profiles of VZV-infected primary human brain vascular adventitial fibroblasts (HBVAFs), one of the initial arterial cells infected in VZV vasculopathy, to determine whether they are a potential source of amyloid that can disrupt vasculature and potentiate inflammation. METHODS: Mock- and VZV-infected quiescent HBVAFs were harvested at 3 days postinfection. Targeted RNA sequencing of the whole-human transcriptome (BioSpyder Technologies, TempO-Seq) was conducted followed by gene set enrichment and pathway analysis. Selected pathways unique to VZV-infected cells were confirmed by enzyme-linked immunoassays, migration assays, and immunofluorescence analysis (IFA) that included antibodies against amylin and amyloid-beta, as well as amyloid staining by Thioflavin-T. RESULTS: Compared with mock, VZV-infected HBVAFs had significantly enriched gene expression pathways involved in vascular remodeling and vascular diseases; confirmatory studies showed secretion of matrix metalloproteinase-3 and -10, as well increased migration of infected cells and uninfected cells when exposed to conditioned media from VZV-infected cells. In addition, significantly enriched pathways involved in amyloid-associated diseases (diabetes mellitus, amyloidosis, and Alzheimer disease), tauopathy, and progressive neurologic disorder were identified; predicted upstream regulators included amyloid precursor protein, apolipoprotein E, microtubule-associated protein tau, presenilin 1, and IAPP. Confirmatory IFA showed that VZV-infected HBVAFs contained amyloidogenic peptides (amyloid-beta and amylin) and intracellular amyloid. DISCUSSION: Gene expression profiles and pathway enrichment analysis of VZV-infected HBVAFs, as well as phenotypic studies, reveal features of pathologic vascular remodeling (e.g., increased cell migration and changes in the extracellular matrix) that can contribute to cerebrovascular disease. Furthermore, the discovery of amyloid-associated transcriptional pathways and intracellular amyloid deposition in HBVAFs raise the possibility that VZV vasculopathy is an amyloid disease. Amyloid deposition may contribute to cell death and loss of vascular wall integrity, as well as potentiate chronic inflammation in VZV vasculopathy, with disease severity and recurrence determined by the host's ability to clear virus infection and amyloid deposition and by the coexistence of other amyloid-associated diseases (i.e., Alzheimer disease and diabetes mellitus).


Subject(s)
Adventitia , Amyloid beta-Peptides/metabolism , Cerebrovascular Disorders , Fibroblasts , Varicella Zoster Virus Infection , Vascular Remodeling , Adventitia/cytology , Adventitia/metabolism , Adventitia/pathology , Adventitia/virology , Cells, Cultured , Cerebrovascular Disorders/metabolism , Cerebrovascular Disorders/pathology , Cerebrovascular Disorders/virology , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/virology , Humans , Sequence Analysis, RNA , Transcriptome/physiology , Varicella Zoster Virus Infection/metabolism , Varicella Zoster Virus Infection/pathology , Varicella Zoster Virus Infection/virology , Vascular Remodeling/physiology
7.
Article in English | MEDLINE | ID: mdl-34493606

ABSTRACT

BACKGROUND AND OBJECTIVES: Varicella zoster virus (VZV) antigen has been detected in temporal arteries (TAs) of individuals with giant cell arteritis (GCA), the most common systemic vasculitis in older adults. Thus, we explored the contribution of VZV to GCA pathogenesis. METHODS: Formalin-fixed, paraffin-embedded TA sections from biopsy-positive GCA participants with VZV antigen (GCA/VZV-positive; n = 20) and without (GCA/VZV-negative, n = 20) and from normal participants with VZV antigen (control/VZV-positive, n = 11) and without (control/VZV-negative, n = 20) were analyzed by targeted RNA sequencing of the whole human transcriptome (BioSpyder TempO-Seq). Ingenuity pathway analysis and R-computational program were used to identify differentially expressed genes and pathways between groups. RESULTS: Compared with control/VZV-negative TAs, GCA/VZV-negative and GCA/VZV-positive TAs were significantly enriched for human transcripts specific for pathways involved in viral infections, including viral entry, nuclear factor kappa B activation by viruses, and other pathogen-related immune activation pathways. Similarly, human gene sets supporting viral infection were found in control/VZV-positive TAs that showed no morphological signs of inflammation, suggesting that the enriched pathways were not nonspecific signatures of infiltrating immune cells. All GCA TAs and control/VZV-positive TAs showed enrichment of transcripts involved in vascular remodeling, including smooth muscle cell migration. DISCUSSION: The detection of viral and immune activation pathways in GCA TAs supports a role for virus infection in GCA pathogenesis. In addition, the detection of viral pathways in control/VZV-positive TAs, along with vascular remodeling pathways, suggests that these samples may represent early infection with progression to clinical disease, depending on host and other environmental factors.


Subject(s)
Antigens, Viral/isolation & purification , DNA, Viral/isolation & purification , Giant Cell Arteritis/virology , Herpesvirus 3, Human , Temporal Arteries/virology , Aged , Female , Formaldehyde , Gene Expression Profiling , Giant Cell Arteritis/pathology , Humans , Male , Middle Aged , Paraffin Embedding , Sequence Analysis, RNA , Temporal Arteries/pathology , Tissue Fixation
8.
Viruses ; 13(7)2021 06 26.
Article in English | MEDLINE | ID: mdl-34206909

ABSTRACT

Latent varicella zoster virus (VZV) has been detected in human adrenal glands, raising the possibility of virus-induced adrenal damage and dysfunction during primary infection or reactivation. Rare cases of bilateral adrenal hemorrhage and insufficiency associated with VZV reactivation have been reported. Since there is no animal model for VZV infection of adrenal glands, we obtained adrenal glands from two non-human primates (NHPs) that spontaneously developed varicella from primary simian varicella virus (SVV) infection, the NHP VZV homolog. Histological and immunohistochemical analysis revealed SVV antigen and DNA in the adrenal medulla and cortex of both animals. Adrenal glands were observed to have Cowdry A inclusion bodies, cellular necrosis, multiple areas of hemorrhage, and varying amounts of polymorphonuclear cells. No specific association of SVV antigen with ßIII-tubulin-positive nerve fibers was found. Overall, we found that SVV can productively infect NHP adrenal glands, and is associated with inflammation, hemorrhage, and cell death. These findings suggest that further studies are warranted to examine the contribution of VZV infection to human adrenal disease. This study also suggests that VZV infection may present itself as acute adrenal dysfunction with "long-hauler" symptoms of fatigue, weakness, myalgias/arthralgias, and hypotension.


Subject(s)
Adrenal Glands/pathology , Adrenal Glands/virology , Herpesviridae Infections/pathology , Herpesvirus 3, Human/pathogenicity , Adrenal Glands/cytology , Animals , Female , Herpesviridae Infections/virology , Histological Techniques , Macaca fascicularis/virology , Male
9.
Article in English | MEDLINE | ID: mdl-33891978

ABSTRACT

Over sixteen million people suffer from a depressive episode annually in the United States, with females affected at twice the rate of males. Little is known about the effects of exposure to high altitude on the risk of development of major depressive disorder, despite reports of higher suicide rates at higher altitudes. We hypothesize that exposure to hypobaric hypoxia at high altitude increases endophenotypes of self-directed suicidal violence, including biological signatures of chronic inflammation and vulnerability to anxiety-like and depressive-like behavioral responses in a sex-specific manner. Biological signatures of inflammation, including granulocyte:lymphocyte ratios, monocyte cell counts, and monocyte:lymphocyte ratios were assessed using complete blood count data, anhedonia, and anxiety- and depressive-like behavioral responses were evaluated. We assessed biological signatures of inflammation and behavioral responses in the open-field test, sucrose preference test, and modified Porsolt forced swim test in young adult male and female Long-Evans and Sprague Dawley rats. All tests were conducted near sea level (374 ft [114 m] elevation) and at moderate-high altitude (5430 ft [1655 m] elevation) during acclimation periods of one, two, three, four, and five weeks following shipment from a sea level animal breeding facility (N = 320, n = 8 per group). Exposure to moderate-high altitude induced a biological signature of increased inflammation, as evidenced by main effects of altitude for: 1) increased granulocyte:lymphocyte ratio; 2) increased count and relative abundance of circulating monocytes; and 3) increased monocyte:lymphocyte ratios. Exposure to moderate-high altitude also increased anhedonia as assessed in the sucrose preference test in both male and female rats, when data were collapsed across strain and time. Among male and female Long Evans rats, exposure to moderate-high altitude increased immobility in the forced swim test, without changing anxiety-like behaviors in the open-field test. Finally, granulocyte:lymphocyte ratios were correlated with anhedonia in the sucrose preference test. These data are consistent with the hypothesis that hypobaric hypoxia at moderate-high altitude induces persistent endophenotypes of self-directed suicidal violence including biological signatures of inflammation, anhedonia, and depressive-like behavioral responses.


Subject(s)
Altitude , Anxiety/etiology , Behavior, Animal , Depression/etiology , Hypoxia/complications , Inflammation/physiopathology , Anhedonia , Animals , Dietary Sucrose/administration & dosage , Endophenotypes , Female , Granulocytes , Lymphocytes , Male , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Swimming
10.
J Neurol Sci ; 422: 117315, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33503519

ABSTRACT

OBJECTIVE: Varicella zoster virus (VZV) vasculopathy and cerebral amyloid angiopathy (CAA) have similar clinical presentations: both affect cerebrovasculature in the elderly, produce hemorrhage, and can have a protracted course of cognitive decline and other neurological deficits. The cause of CAA is unknown, but amyloid-beta (Aß) is found within arterial walls. Recent studies show that VZV induces Aß and amylin expression and an amyloid-promoting environment. Thus, we determined if VZV was present in CAA-affected arteries. METHODS: Two subjects with pathologically-verified CAA were identified postmortem and frontal lobes analyzed by immunohistochemistry for arteries containing VZV, Aß, and amylin and H&E for pathological changes. VZV antigen detection was confirmed by PCR for VZV DNA in the same region. RESULTS: In both CAA cases, sections with cerebral arteries containing VZV antigen with corresponding VZV DNA were identified; VZV antigen co-localized with Aß in media of arteries with histological changes characteristic of CAA. Amylin was also seen in the intima of a VZV-positive artery in the diabetic subject. Not all Aß-containing arteries had VZV, but all VZV-positive arteries contained Aß. CONCLUSIONS: VZV antigen co-localized with Aß in some affected arteries from two CAA cases, suggesting a possible association between VZV infection and CAA.


Subject(s)
Cerebral Amyloid Angiopathy , Herpesvirus 3, Human , Aged , Amyloid beta-Peptides , Cerebral Arteries , DNA , Humans
11.
J Infect Dis ; 223(7): 1284-1294, 2021 04 08.
Article in English | MEDLINE | ID: mdl-32809013

ABSTRACT

BACKGROUND: Varicella zoster virus (VZV) vasculopathy is characterized by persistent arterial inflammation leading to stroke. Studies show that VZV induces amyloid formation that may aggravate vasculitis. Thus, we determined if VZV central nervous system infection produces amyloid. METHODS: Aß peptides, amylin, and amyloid were measured in cerebrospinal fluid (CSF) from 16 VZV vasculopathy subjects and 36 stroke controls. To determine if infection induced amyloid deposition, mock- and VZV-infected quiescent primary human perineurial cells (qHPNCs), present in vasculature, were analyzed for intracellular amyloidogenic transcripts/proteins and amyloid. Supernatants were assayed for amyloidogenic peptides and ability to induce amyloid formation. To determine amylin's function during infection, amylin was knocked down with small interfering RNA and viral complementary DNA (cDNA) was quantitated. RESULTS: Compared to controls, VZV vasculopathy CSF had increased amyloid that positively correlated with amylin and anti-VZV antibody levels; Aß40 was reduced and Aß42 unchanged. Intracellular amylin, Aß42, and amyloid were seen only in VZV-infected qHPNCs. VZV-infected supernatant formed amyloid fibrils following addition of amyloidogenic peptides. Amylin knockdown decreased viral cDNA. CONCLUSIONS: VZV infection increased levels of amyloidogenic peptides and amyloid in CSF and qHPNCs, indicating that VZV-induced amyloid deposition may contribute to persistent arterial inflammation in VZV vasculopathy. In addition, we identified a novel proviral function of amylin.


Subject(s)
Amyloid beta-Peptides , Amyloid , Arteritis , Herpes Zoster , Islet Amyloid Polypeptide , Peptide Fragments , Amyloid/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Arteritis/cerebrospinal fluid , Arteritis/diagnosis , Arteritis/virology , DNA, Complementary , DNA, Viral , Herpes Zoster/cerebrospinal fluid , Herpes Zoster/diagnosis , Herpesvirus 3, Human , Humans , Islet Amyloid Polypeptide/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Stroke
12.
J Neurovirol ; 26(3): 422-428, 2020 06.
Article in English | MEDLINE | ID: mdl-32385803

ABSTRACT

Herpes zoster is associated with an increased dementia and neovascular macular degeneration risk and a decline in glycemic control in diabetes mellitus. Because amyloid is present and pathogenic in these diseases, we quantified amyloid, Aß40, Aß42, and amylin in 14 zoster and 10 control plasmas. Compared with controls, zoster plasma had significantly elevated amyloid that correlated with Aß42 and amylin levels and increased amyloid aggregation with addition of exogenous Aß42 or amylin. These results suggest that zoster plasma contains factor(s) that promotes aggregation of amyloidogenic peptides, potentially contributing to the toxic amyloid burden and explaining accelerated disease progression following zoster.


Subject(s)
Amyloid beta-Peptides/genetics , Herpes Zoster/blood , Herpesvirus 3, Human/pathogenicity , Islet Amyloid Polypeptide/genetics , Peptide Fragments/genetics , Protein Aggregation, Pathological/blood , Adult , Aged , Aged, 80 and over , Amyloid beta-Peptides/blood , Case-Control Studies , Female , Gene Expression , Herpes Zoster/genetics , Herpes Zoster/pathology , Herpesvirus 3, Human/growth & development , Host-Pathogen Interactions/genetics , Humans , Islet Amyloid Polypeptide/blood , Male , Middle Aged , Peptide Fragments/blood , Protein Aggregates , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology
13.
Front Physiol ; 11: 524833, 2020.
Article in English | MEDLINE | ID: mdl-33469429

ABSTRACT

Previous studies demonstrate that Mycobacterium vaccae NCTC 11659 (M. vaccae), a soil-derived bacterium with anti-inflammatory and immunoregulatory properties, is a potentially useful countermeasure against negative outcomes to stressors. Here we used male C57BL/6NCrl mice to determine if repeated immunization with M. vaccae is an effective countermeasure in a "two hit" stress exposure model of chronic disruption of rhythms (CDR) followed by acute social defeat (SD). On day -28, mice received implants of biotelemetric recording devices to monitor 24-h rhythms of locomotor activity. Mice were subsequently treated with a heat-killed preparation of M. vaccae (0.1 mg, administered subcutaneously on days -21, -14, -7, and 27) or borate-buffered saline vehicle. Mice were then exposed to 8 consecutive weeks of either stable normal 12:12 h light:dark (LD) conditions or CDR, consisting of 12-h reversals of the LD cycle every 7 days (days 0-56). Finally, mice were exposed to either a 10-min SD or a home cage control condition on day 54. All mice were exposed to object location memory testing 24 h following SD. The gut microbiome and metabolome were assessed in fecal samples collected on days -1, 48, and 62 using 16S rRNA gene sequence and LC-MS/MS spectral data, respectively; the plasma metabolome was additionally measured on day 64. Among mice exposed to normal LD conditions, immunization with M. vaccae induced a shift toward a more proactive behavioral coping response to SD as measured by increases in scouting and avoiding an approaching male CD-1 aggressor, and decreases in submissive upright defensive postures. In the object location memory test, exposure to SD increased cognitive function in CDR mice previously immunized with M. vaccae. Immunization with M. vaccae stabilized the gut microbiome, attenuating CDR-induced reductions in alpha diversity and decreasing within-group measures of beta diversity. Immunization with M. vaccae also increased the relative abundance of 1-heptadecanoyl-sn-glycero-3-phosphocholine, a lysophospholipid, in plasma. Together, these data support the hypothesis that immunization with M. vaccae stabilizes the gut microbiome, induces a shift toward a more proactive response to stress exposure, and promotes stress resilience.

14.
J Infect Dis ; 221(7): 1088-1097, 2020 03 16.
Article in English | MEDLINE | ID: mdl-31665341

ABSTRACT

BACKGROUND: Herpes zoster is linked to amyloid-associated diseases, including dementia, macular degeneration, and diabetes mellitus, in epidemiological studies. Thus, we examined whether varicella-zoster virus (VZV)-infected cells produce amyloid. METHODS: Production of intracellular amyloidogenic proteins (amylin, amyloid precursor protein [APP], and amyloid-ß [Aß]) and amyloid, as well as extracellular amylin, Aß, and amyloid, was compared between mock- and VZV-infected quiescent primary human spinal astrocytes (qHA-sps). The ability of supernatant from infected cells to induce amylin or Aß42 aggregation was quantitated. Finally, the amyloidogenic activity of viral peptides was examined. RESULTS: VZV-infected qHA-sps, but not mock-infected qHA-sps, contained intracellular amylin, APP, and/or Aß, and amyloid. No differences in extracellular amylin, Aß40, or Aß42 were detected, yet only supernatant from VZV-infected cells induced amylin aggregation and, to a lesser extent, Aß42 aggregation into amyloid fibrils. VZV glycoprotein B (gB) peptides assembled into fibrils and catalyzed amylin and Aß42 aggregation. CONCLUSIONS: VZV-infected qHA-sps produced intracellular amyloid and their extracellular environment promoted aggregation of cellular peptides into amyloid fibrils that may be due, in part, to VZV gB peptides. These findings suggest that together with host and other environmental factors, VZV infection may increase the toxic amyloid burden and contribute to amyloid-associated disease progression.


Subject(s)
Amyloid beta-Peptides , Astrocytes , Islet Amyloid Polypeptide , Varicella Zoster Virus Infection/metabolism , Acyclovir/pharmacology , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Antiviral Agents/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/virology , Cells, Cultured , Extracellular Space/metabolism , Humans , Intracellular Space/metabolism , Islet Amyloid Polypeptide/chemistry , Islet Amyloid Polypeptide/metabolism , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism
15.
Behav Brain Res ; 373: 112086, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31319134

ABSTRACT

Previous studies have highlighted interactions between serotonergic systems and adverse early life experience as important gene x environment determinants of risk of stress-related psychiatric disorders. Evidence suggests that mice deficient in Tph2, the rate-limiting enzyme for brain serotonin synthesis, display disruptions in behavioral phenotypes relevant to stress-related psychiatric disorders. The aim of this study was to determine how maternal separation in wild-type, heterozygous, and Tph2 knockout mice affects mRNA expression of serotonin-related genes. Serotonergic genes studied included Tph2, the high-affinity, low-capacity, sodium-dependent serotonin transporter (Slc6a4), the serotonin type 1a receptor (Htr1a), and the corticosterone-sensitive, low-affinity, high-capacity sodium-independent serotonin transporter, organic cation transporter 3 (Slc22a3). Furthermore, we studied corticotropin-releasing hormone receptors 1 (Crhr1) and 2 (Crhr2), which play important roles in controlling serotonergic neuronal activity. For this study, offspring of Tph2 heterozygous dams were exposed to daily maternal separation for the first two weeks of life. Adult, male wild-type, heterozygous, and homozygous offspring were subsequently used for molecular analysis. Maternal separation differentially altered serotonergic gene expression in a genotype- and topographically-specific manner. For example, maternal separation increased Slc6a4 mRNA expression in the dorsal part of the dorsal raphe nucleus in Tph2 heterozygous mice, but not in wild-type or knockout mice. Overall, these data are consistent with the hypothesis that gene x environment interactions, including serotonergic genes and adverse early life experience, play an important role in vulnerability to stress-related psychiatric disorders.


Subject(s)
Raphe Nuclei/physiopathology , Stress, Psychological/metabolism , Tryptophan Hydroxylase/metabolism , Animals , Corticosterone/metabolism , Dorsal Raphe Nucleus/drug effects , Female , Male , Maternal Deprivation , Mice , Mice, Inbred C57BL , Mice, Knockout , Organic Cation Transport Proteins/metabolism , Raphe Nuclei/drug effects , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Serotonergic Neurons/metabolism , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/physiology
16.
Brain Behav Immun ; 81: 151-160, 2019 10.
Article in English | MEDLINE | ID: mdl-31175996

ABSTRACT

The hygiene hypothesis or "Old Friends" hypothesis proposes that inflammatory diseases are increasing in modern urban societies, due in part to reduced exposure to microorganisms that drive immunoregulatory circuits and a failure to terminate inappropriate inflammatory responses. Inappropriate inflammation is also emerging as a risk factor for anxiety disorders, affective disorders, and trauma-and stressor-related disorders, including posttraumatic stress disorder (PTSD), which is characterized as persistent re-experiencing of the trauma after a traumatic experience. Traumatic experiences can lead to long-lasting fear memories and fear potentiation of the acoustic startle reflex. The acoustic startle reflex is an ethologically relevant reflex and can be potentiated in both humans and rats through Pavlovian conditioning. Mycobacterium vaccae is a soil-derived bacterium with immunoregulatory and anti-inflammatory properties that has been demonstrated to enhance fear extinction in the fear-potentiated startle paradigm when given prior to fear conditioning. To determine if immunization with M. vaccae after fear conditioning also has protective effects, adult male Sprague Dawley rats underwent fear conditioning on days -37 and -36 followed by immunizations (3x), once per week beginning 24 h following fear conditioning, with a heat-killed preparation of M. vaccae NCTC 11659 (0.1 mg, s.c., in 100 µl borate-buffered saline) or vehicle, and, then, 3 weeks following the final immunization, were tested in the fear-potentiated startle paradigm (n = 12 per group). Rats underwent fear extinction training on days 1 through 6 followed by spontaneous recovery 14 days later (day 20). Rats were euthanized on day 21 and brain tissue was sectioned for analysis of Tph2, Htr1a, Slc6a4, Slc22a3, and Crhr2 mRNA expression throughout the brainstem dorsal and median raphe nuclei. Immunization with M. vaccae did not affect fear expression on day 1. However, M. vaccae-immunized rats showed enhanced enhanced within-session fear extinction on day 1 and enhanced between-session fear extinction beginning on day 2, relative to vehicle-immunized controls. Immunization with M. vaccae and fear-potentiated startle had minimal effects on serotonergic gene expression when assessed 42 days after the final immunization. Together with previous studies, these data are consistent with the hypothesis that immunoregulatory strategies, such as immunization with M. vaccae, have potential for both prevention and treatment of trauma- and stressor-related psychiatric disorders.


Subject(s)
Extinction, Psychological/drug effects , Fear/drug effects , Mycobacteriaceae/immunology , Animals , Anxiety/metabolism , Brain/metabolism , Conditioning, Classical/physiology , Extinction, Psychological/physiology , Fear/physiology , Immunization , Inflammation , Male , Mycobacteriaceae/pathogenicity , Raphe Nuclei/metabolism , Rats , Rats, Sprague-Dawley , Reflex, Startle/drug effects , Stress Disorders, Post-Traumatic/metabolism , Vaccination
17.
Neurosci Lett ; 701: 119-124, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30776492

ABSTRACT

Organic cation transporter 3 (OCT3) is a corticosterone-sensitive, low-affinity, high-capacity transporter. This transporter functions, in part, to clear monoamines, including serotonin (5-HT), from the extracellular space. The central nucleus of the amygdala (CeA) is an important structure controlling fear- and anxiety-related behaviors. The CeA has reciprocal connections with brainstem nuclei containing monoaminergic systems, including serotonergic systems arising from the dorsal raphe nucleus, which are thought to play an important role in modulation of CeA-mediated behavioral responses. Organic cation transporter 3 (OCT3) is expressed in the CeA, but little is known about the role of OCT3 within the CeA in modulating serotonergic signaling. We hypothesized that inhibition of OCT3-mediated transport in the CeA during restraint stress would increase extracellular 5-HT. In Experiment 1, rats received unilateral reverse dialysis of either corticosterone or normetanephrine, which interfere with OCT3-mediated transport, into the CeA under home cage control conditions. In Experiment 2, rats received unilateral reverse dialysis of corticosterone, normetanephrine, or vehicle into the CeA, while undergoing a 40-min period of restraint stress. Infusion of these drugs had no effect on extracellular concentrations of 5-HT during home cage control conditions, but, in contrast, markedly increased extracellular concentrations of 5-HT during restraint stress, relative to vehicle-treated controls. These findings suggest a role for OCT3 in the CeA in control of serotonergic signaling during stressful conditions.


Subject(s)
Central Amygdaloid Nucleus/drug effects , Central Amygdaloid Nucleus/metabolism , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Serotonin/metabolism , Stress, Psychological/drug therapy , Animals , Anxiety/metabolism , Corticosterone/pharmacology , Extracellular Space/drug effects , Extracellular Space/metabolism , Fear/physiology , Male , Microdialysis , Normetanephrine/pharmacology , Rats , Rats, Sprague-Dawley
18.
Brain Behav Immun ; 77: 127-140, 2019 03.
Article in English | MEDLINE | ID: mdl-30597198

ABSTRACT

Posttraumatic stress disorder (PTSD) is a trauma and stressor-related disorder that is characterized by dysregulation of glucocorticoid signaling, chronic low-grade inflammation, and impairment in the ability to extinguish learned fear. Corticotropin-releasing hormone (Crh) is a stress- and immune-responsive neuropeptide secreted from the paraventricular nucleus of the hypothalamus (PVN) to stimulate the hypothalamic-pituitary-adrenal (HPA) axis; however, extra-hypothalamic sources of Crh from the central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST) govern specific fear- and anxiety-related defensive behavioral responses. We previously reported that preimmunization with a heat-killed preparation of the immunoregulatory environmental bacterium Mycobacterium vaccae NCTC 11659 enhances fear extinction in a fear-potentiated startle (FPS) paradigm. In this follow-up study, we utilized an in situ hybridization histochemistry technique to investigate Crh, Crhr1, and Crhr2 mRNA expression in the CeA, BNST, and PVN of the same rats from the original study [Fox et al., 2017, Brain, Behavior, and Immunity, 66: 70-84]. Here, we demonstrate that preimmunization with M. vaccae NCTC 11659 decreases Crh mRNA expression in the CeA and BNST of rats exposed to the FPS paradigm, and, further, that Crh mRNA expression in these regions is correlated with fear behavior during extinction training. These data are consistent with the hypothesis that M. vaccae promotes stress-resilience by attenuating Crh production in fear- and anxiety-related circuits. These data suggest that immunization with M. vaccae may be an effective strategy for prevention of fear- and anxiety-related disorders.


Subject(s)
Corticotropin-Releasing Hormone/drug effects , Fear/drug effects , Mycobacteriaceae/immunology , Amygdala/drug effects , Amygdala/metabolism , Animals , Anxiety/physiopathology , Anxiety/therapy , Brain/metabolism , Corticotropin-Releasing Hormone/metabolism , Fear/physiology , Follow-Up Studies , Gene Expression/drug effects , Hypothalamo-Hypophyseal System/metabolism , Immunization/methods , Male , Neuropeptides/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary-Adrenal System/metabolism , Rats , Rats, Sprague-Dawley , Reflex, Startle/drug effects , Reflex, Startle/physiology , Septal Nuclei
19.
Neurobiol Stress ; 8: 68-81, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29520369

ABSTRACT

Expression of TPH2, the rate-limiting enzyme for brain serotonin synthesis, is elevated in the dorsal raphe nucleus (DR) of depressed suicide victims. One hypothesis is that this increase in TPH2 expression is stress-induced. Here, we used an established animal model to address whether exposure to an acute stressor, inescapable tail shock (IS), increases tph2 mRNA and Tph2 protein expression, and if IS sensitizes the DR to a subsequent, heterotypic stressor. In Experiment 1, we measured tph2 mRNA expression 4 h after IS or home cage (HC) control conditions in male rats, using in situ hybridization histochemistry. In Experiment 2, we measured Tph2 protein expression 12 h or 24 h after IS using western blot. In Experiment 3, we measured tph2 mRNA expression following IS on Day 1, and cold swim stress (10 min, 15 °C) on Day 2. Inescapable tail shock was sufficient to increase tph2 mRNA expression 4 h and 28 h later, selectively in the dorsomedial DR (caudal aspect of the dorsal DR, cDRD; an area just rostral to the caudal DR, DRC) and increased Tph2 protein expression in the DRD (rostral and caudal aspects of the dorsal DR combined) 24 h later. Cold swim increased tph2 mRNA expression in the dorsomedial DR (cDRD) 4 h later. These effects were associated with increased immobility during cold swim, elevated plasma corticosterone, and a proinflammatory plasma cytokine milieu (increased interleukin (IL)-6, decreased IL-10). Our data demonstrate that two models of inescapable stress, IS and cold swim, increase tph2 mRNA expression selectively in the anxiety-related dorsomedial DR (cDRD).

20.
Brain Behav Immun ; 66: 70-84, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28888667

ABSTRACT

The hygiene hypothesis or "Old Friends" hypothesis proposes that inflammatory diseases are increasing in modern urban societies, due in part to reduced exposure to microorganisms that drive immunoregulatory circuits, and a failure to terminate inappropriate inflammatory responses. Inappropriate inflammation is also emerging as a risk factor for trauma-related, anxiety, and affective disorders, including posttraumatic stress disorder (PTSD), which is characterized as persistent re-experiencing of the trauma after a traumatic experience. Traumatic experiences can lead to long-lasting fear memories and exaggerated fear potentiation of the acoustic startle reflex. The acoustic startle reflex is an ethologically relevant reflex and can be potentiated in both humans and rats through Pavlovian conditioning. Mycobacterium vaccae NCTC 11659 is a soil-derived bacterium with immunoregulatory and anti-inflammatory properties that has been demonstrated to confer stress resilience in mice. Here we immunized adult male Sprague Dawley rats 3×, once per week, with a heat-killed preparation of M. vaccae NCTC 11659 (0.1mg, s.c., in 100µl borate-buffered saline) or vehicle, and, then, 3weeks following the final immunization, tested them in the fear-potentiated startle paradigm; controls were maintained under home cage control conditions throughout the experiment (n=11-12 per group). Rats were tested on days 1 and 2 for baseline acoustic startle, received fear conditioning on days 3 and 4, and underwent fear extinction training on days 5-10. Rats were euthanized on day 11 and brain tissue was sectioned for analysis of mRNA expression for genes important in control of brain serotonergic signaling, including tph2, htr1a, slc6a4, and slc22a3, throughout the brainstem dorsal and median raphe nuclei. Immunization with M. vaccae had no effect on baseline acoustic startle or fear expression on day 5. However, M. vaccae-immunized rats showed enhanced between-session and within-session extinction on day 6, relative to vehicle-immunized controls. Immunization with M. vaccae and fear-potentiated startle altered serotonergic gene expression in a gene- and subregion-specific manner. These data are consistent with the hypothesis that immunoregulatory strategies, such as preimmunization with M. vaccae, have potential for prevention of stress- and trauma-related psychiatric disorders.


Subject(s)
Bacterial Vaccines/administration & dosage , Extinction, Psychological , Fear , Mycobacterium/immunology , Stress, Psychological/immunology , Vaccines, Inactivated/administration & dosage , Animals , Brain/metabolism , Conditioning, Classical , Immunization , Male , Organic Cation Transport Proteins/metabolism , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT1A/metabolism , Reflex, Startle , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Tryptophan Hydroxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...