Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 904: 166801, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37669708

ABSTRACT

Global expansion of marine renewable energy (MRE) technologies is needed to help address the impacts of climate change, to ensure a sustainable transition from carbon-based energy sources, and to meet national energy security needs using locally-generated electricity. However, the MRE sector has yet to realize its full potential due to the limited scale of device deployments (i.e., single devices or small demonstration-scale arrays), and is hampered by various factors including uncertainty about environmental effects and how the magnitude of these effects scale with an increasing number of devices. This paper seeks to expand our understanding of the environmental effects of MRE arrays using existing frameworks and through the adaptation and application of cumulative environmental effects terminology to key stressor-receptor interactions. This approach facilitates the development of generalized concepts for the scaling of environmental effects for key stressor-receptor interactions, identifying high priority risks and revealing knowledge gaps that require investigation to aid expansion of the MRE sector. Results suggest that effects of collision risk for an array may be additive, antagonistic, or synergistic, but are likely dependent on array location and configuration. Effects of underwater noise are likely additive as additional devices are deployed in an array, while the effects of electromagnetic fields may be dominant, additive, or antagonistic. Changes to benthic habitats are likely additive, but may be dependent on array configuration and could be antagonistic or synergistic at the ecosystem scale. Effects of displacement, entanglement, and changes to oceanographic systems for arrays are less certain because little information is available about effects at the current scale of MRE development.

2.
Ecol Evol ; 7(17): 6638-6648, 2017 09.
Article in English | MEDLINE | ID: mdl-28904746

ABSTRACT

Freshwater habitat alteration and marine fisheries can affect anadromous fish species, and populations fluctuating in size elicit conservation concern and coordinated management. We describe the development and characterization of two sets of 96 single nucleotide polymorphism (SNP) assays for two species of anadromous alosine fishes, alewife and blueback herring (collectively known as river herring), that are native to the Atlantic coast of North America. We used data from high-throughput DNA sequencing to discover SNPs and then developed molecular genetic assays for genotyping sets of 96 individual loci in each species. The two sets of assays were validated with multiple populations that encompass both the geographic range and the known regional genetic stocks of both species. The SNP panels developed herein accurately resolved the genetic stock structure for alewife and blueback herring that was previously identified using microsatellites and assigned individuals to regional stock of origin with high accuracy. These genetic markers, which generate data that are easily shared and combined, will greatly facilitate ongoing conservation and management of river herring including genetic assignment of marine caught individuals to stock of origin.

3.
Evol Appl ; 10(4): 402-416, 2017 04.
Article in English | MEDLINE | ID: mdl-28352299

ABSTRACT

Invasive species have become widespread in aquatic environments throughout the world, yet there are few studies that have examined genomic variation of multiple introduced species in newly colonized environments. In this study, we contrast genomic variation in two salmonid species (anadromous Chinook Salmon, Oncorhynchus tshawytscha, 11,579 SNPs and resident Brook Charr Salvelinus fontinalis, 13,522 SNPs) with differing invasion success after introduction to new environments in South America relative to populations from their native range in North America. Estimates of genetic diversity were not significantly different between introduced and source populations for either species, indicative of propagule pressure that has been shown to maintain diversity in founding populations relative to their native range. Introduced populations also demonstrated higher connectivity and gene flow than those in their native range. Evidence for candidate loci under divergent selection was observed, but was limited to specific introduced populations and was not widely evident. Patterns of genomic variation were consistent with general dispersal potential of each species and therefore also the notion that life history variation may contribute to both invasion success and subsequent genetic structure of these two salmonids in Patagonia.

4.
Evol Appl ; 7(2): 212-26, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24567743

ABSTRACT

A major challenge in conservation biology is the need to broadly prioritize conservation efforts when demographic data are limited. One method to address this challenge is to use population genetic data to define groups of populations linked by migration and then use demographic information from monitored populations to draw inferences about the status of unmonitored populations within those groups. We applied this method to anadromous alewife (Alosa pseudoharengus) and blueback herring (Alosa aestivalis), species for which long-term demographic data are limited. Recent decades have seen dramatic declines in these species, which are an important ecological component of coastal ecosystems and once represented an important fishery resource. Results show that most populations comprise genetically distinguishable units, which are nested geographically within genetically distinct clusters or stocks. We identified three distinct stocks in alewife and four stocks in blueback herring. Analysis of available time series data for spawning adult abundance and body size indicate declines across the US ranges of both species, with the most severe declines having occurred for populations belonging to the Southern New England and the Mid-Atlantic Stocks. While all alewife and blueback herring populations deserve conservation attention, those belonging to these genetic stocks warrant the highest conservation prioritization.

5.
Mol Ecol ; 23(5): 1137-52, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24450302

ABSTRACT

Most evidence for hybrid swarm formation stemming from anthropogenic habitat disturbance comes from the breakdown of reproductive isolation between incipient species, or introgression between allopatric species following secondary contact. Human impacts on hybridization between divergent species that naturally occur in sympatry have received considerably less attention. Theory predicts that reinforcement should act to preserve reproductive isolation under such circumstances, potentially making reproductive barriers resistant to human habitat alteration. Using 15 microsatellites, we examined hybridization between sympatric populations of alewife (Alosa pseudoharengus) and blueback herring (A. aestivalis) to test whether the frequency of hybridization and pattern of introgression have been impacted by the construction of a dam that isolated formerly anadromous populations of both species in a landlocked freshwater reservoir. The frequency of hybridization and pattern of introgression differed markedly between anadromous and landlocked populations. The rangewide frequency of hybridization among anadromous populations was generally 0-8%, whereas all landlocked individuals were hybrids. Although neutral introgression was observed among anadromous hybrids, directional introgression leading to increased prevalence of alewife genotypes was detected among landlocked hybrids. We demonstrate that habitat alteration can lead to hybrid swarm formation between divergent species that naturally occur sympatrically, and provide empirical evidence that reinforcement does not always sustain reproductive isolation under such circumstances.


Subject(s)
Fishes/genetics , Genetics, Population , Hybridization, Genetic , Sympatry , Animals , Bayes Theorem , Cluster Analysis , Ecosystem , Genotyping Techniques , Humans , Microsatellite Repeats , Models, Genetic , North America , Sequence Analysis, DNA
6.
Mol Ecol ; 22(6): 1558-73, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23379260

ABSTRACT

Studies that span entire species ranges can provide insight into the relative roles of historical contingency and contemporary factors that influence population structure and can reveal patterns of genetic variation that might otherwise go undetected. American shad is a wide ranging anadromous clupeid fish that exhibits variation in demographic histories and reproductive strategies (both semelparity and iteroparity) and provides a unique perspective on the evolutionary processes that govern the genetic architecture of anadromous fishes. Using 13 microsatellite loci, we examined the magnitude and spatial distribution of genetic variation among 33 populations across the species' range to (i) determine whether signals of historical demography persist among contemporary populations and (ii) assess the effect of different reproductive strategies on population structure. Patterns of genetic diversity and differentiation among populations varied widely and reflect the differential influences of historical demography, microevolutionary processes and anthropogenic factors across the species' range. Sequential reductions of diversity with latitude among formerly glaciated rivers are consistent with stepwise postglacial colonization and successive population founder events. Weak differentiation among U.S. iteroparous populations may be a consequence of human-mediated gene flow, while weak differentiation among semelparous populations probably reflects natural gene flow. Evidence for an effect of reproductive strategy on population structure suggests an important role for environmental variation and suggests that the factors that are responsible for shaping American shad life history patterns may also influence population genetic structure.


Subject(s)
Fishes/genetics , Genetic Variation , Genetics, Population , Reproduction , Animals , Bayes Theorem , Cluster Analysis , Fishes/physiology , Gene Flow , Gene Frequency , Microsatellite Repeats , Models, Genetic , North America , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL