Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Small ; 20(14): e2303136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37749947

ABSTRACT

This work investigates the effect of plasmonic gold nanoparticle (AuNP) size on the rate of thermal release of single-stranded oligonucleotides under femtosecond (fs)-pulsed laser irradiation sources. Contrary to the theoretical predictions that larger AuNPs (50-60 nm diameter) would produce the most solution heating and fastest DNA release, it is found that smaller AuNP diameters (25 nm) lead to faster dsDNA denaturation rates. Controlling for the pulse energy fluence, AuNP concentration, DNA loading density, and the distance from the AuNP surface finds the same result. These results imply that the solution temperature increases around the AuNP during fs laser pulse optical heating may not be the only significant influence on dsDNA denaturation, suggesting that direct energy transfer from the AuNP to the DNA (phonon-phonon coupling), which is increased as AuNPs decrease in size, may play a significant role.


Subject(s)
Gold , Metal Nanoparticles , Heating , Lasers , DNA
2.
ACS Sens ; 9(1): 157-170, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38160434

ABSTRACT

Almost all pathogens, whether viral or bacterial, utilize key proteolytic steps in their pathogenesis. The ability to detect a pathogen's genomic material along with its proteolytic activity represents one approach to identifying the pathogen and providing initial evidence of its viability. Here, we report on a prototype biosensor design assembled around a single semiconductor quantum dot (QD) scaffold that is capable of detecting both nucleic acid sequences and proteolytic activity by using orthogonal energy transfer (ET) processes. The sensor consists of a central QD assembled via peptidyl-PNA linkers with multiple DNA sequences that encode complements to genomic sequences originating from the Ebola, Influenza, and COVID-19 viruses, which we use as surrogate targets. These are hybridized to complement strands labeled with a terbium (Tb) chelate, AlexaFluor647 (AF647), and Cy5.5 dyes, giving rise to two potential FRET cascades: the first includes Tb → QD → AF647 → Cy5.5 (→ = ET step), which is detected in a time-gated modality, and QD → AF647 → Cy5.5, which is detected from direct excitation. The labeled DNA-displaying QD construct is then further assembled with a RuII-modified peptide, which quenches QD photoluminescence by charge transfer and is recognized by a protease to yield the full biosensor. Each of the labeled DNAs and peptides can be ratiometrically assembled to the QD in a controllable manner to tune each of the ET pathways. Addition of a given target DNA displaces its labeled complement on the QD, disrupting that FRET channel, while protease addition disrupts charge transfer quenching of the central QD scaffold and boosts its photoluminescence and FRET relay capabilities. Along with characterizing the ET pathways and verifying biosensing in both individual and multiplexed formats, we also demonstrate the ability of this construct to function in molecular logic and perform Boolean operations; this highlights the construct's ability to discriminate and transduce signals between different inputs or pathogens. The potential application space for such a sensor device is discussed.


Subject(s)
Biosensing Techniques , Carbocyanines , Quantum Dots , Quantum Dots/chemistry , Peptide Hydrolases/metabolism , Fluorescence Resonance Energy Transfer , Peptides/chemistry , DNA/chemistry , Endopeptidases/metabolism
3.
Methods Appl Fluoresc ; 11(1)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36719011

ABSTRACT

Coherently coupled pseudoisocyanine (PIC) dye aggregates have demonstrated the ability to delocalize electronic excitations and ultimately migrate excitons with much higher efficiency than similar designs where excitations are isolated to individual chromophores. Here, we report initial evidence of a new type of PIC aggregate, formed through heterogeneous nucleation on DNA oligonucleotides, displaying photophysical properties that differ significantly from previously reported aggregates. This new aggregate, which we call the super aggregate (SA) due to the need for elevated dye excess to form it, is clearly differentiated from previously reported aggregates by spectroscopic and biophysical characterization. In emission spectra, the SA exhibits peak narrowing and, in some cases, significant quantum yield variation, indicative of stronger coupling in cyanine dyes. The SA was further characterized with circular dichroism and atomic force microscopy observing unique features depending on the DNA substrate. Then by integrating an AlexaFluorTM647 (AF) dye as an energy transfer acceptor into the system, we observed mixed energy transfer characteristics using the different DNA. For example, SA formed with a rigid DNA double crossover tile (DX-tile) substrate resulted in AF emission sensitization. While SA formed with more flexible non-DX-tile DNA (i.e. duplex and single strand DNA) resulted in AF emission quenching. These combined characterizations strongly imply that DNA-based PIC aggregate properties can be controlled through simple modifications to the DNA substrate's sequence and geometry. Ultimately, we aim to inform rational design principles for future device prototyping. For example, one key conclusion of the study is that the high absorbance cross-section and efficient energy transfer observed with rigid substrates made for better photonic antennae, compared to flexible DNA substrates.


Subject(s)
Quinolines , Quinolines/chemistry , DNA/chemistry , DNA, Single-Stranded , Circular Dichroism
4.
Sci Rep ; 12(1): 3871, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264624

ABSTRACT

The intra-image identification of DNA structures is essential to rapid prototyping and quality control of self-assembled DNA origami scaffold systems. We postulate that the YOLO modern object detection platform commonly used for facial recognition can be applied to rapidly scour atomic force microscope (AFM) images for identifying correctly formed DNA nanostructures with high fidelity. To make this approach widely available, we use open-source software and provide a straightforward procedure for designing a tailored, intelligent identification platform which can easily be repurposed to fit arbitrary structural geometries beyond AFM images of DNA structures. Here, we describe methods to acquire and generate the necessary components to create this robust system. Beginning with DNA structure design, we detail AFM imaging, data point annotation, data augmentation, model training, and inference. To demonstrate the adaptability of this system, we assembled two distinct DNA origami architectures (triangles and breadboards) for detection in raw AFM images. Using the images acquired of each structure, we trained two separate single class object identification models unique to each architecture. By applying these models in sequence, we correctly identified 3470 structures from a total population of 3617 using images that sometimes included a third DNA origami structure as well as other impurities. Analysis was completed in under 20 s with results yielding an F1 score of 0.96 using our approach.


Subject(s)
Nanostructures , DNA/chemistry , Microscopy, Atomic Force/methods , Nanostructures/chemistry , Nanotechnology/methods , Neural Networks, Computer , Nucleic Acid Conformation , Software
5.
ACS Appl Mater Interfaces ; 14(2): 3404-3417, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34982525

ABSTRACT

There is significant interest in developing photothermal systems that can precisely control the structure and function of biomolecules through local temperature modulation. One specific application is the denaturation of double-stranded (ds) DNA through femtosecond (fs) laser pulse optical heating of gold nanoparticles (AuNPs); however, the mechanism of DNA melting in these systems is not fully understood. Here, we utilize 55 nm AuNPs with surface-tethered dsDNA, which are locally heated using fs laser pulses to induce DNA melting. By varying the dsDNA distance from the AuNP surface and the laser pulse energy fluence, this system is used to study how the nanosecond duration temperature increase and the steep temperature gradient around the AuNP affect dsDNA dehybridization. Through modifying the distance between the dsDNA and AuNP surface by 3.8 nm in total and the pulse energy fluence from 7.1 to 14.1 J/m2, the dehybridization rates ranged from 0.002 to 0.05 DNA per pulse, and the total amount of DNA released into solution was controlled over a range of 26-93% in only 100 s of irradiation. By shifting the dsDNA position as little as ∼1.1 nm, the average dsDNA dehybridization rate is altered up to 30 ± 2%, providing a high level of control over DNA melting and release. By comparing the theoretical temperature around the dsDNA to the experimentally derived temperature, we find that maximum or peak temperatures have a greater influence on the dehybridization rate when the dsDNA is closer to the AuNP surface and when lower laser pulse fluences are used. Furthermore, molecular dynamics simulations mimicking the photothermal heat pulse around a AuNP provide mechanistic insight into the stochastic nature of dehybridization and demonstrate increased base pair separation near the AuNP surface during laser pulse heating when compared to steady-state heating. Understanding how biological materials respond to the short-lived and non-uniform temperature increases innate to fs laser pulse optical heating of AuNPs is critical to improving the functionality and precision of this technique so that it may be implemented into more complex biological systems.


Subject(s)
Biocompatible Materials/chemistry , DNA/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Temperature , Materials Testing , Molecular Dynamics Simulation , Nucleic Acid Denaturation , Time Factors
6.
J Phys Chem B ; 126(1): 110-122, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34962787

ABSTRACT

Progress has been made using B-form DNA duplex strands to template chromophores in ordered molecular aggregates known as J-aggregates. These aggregates can exhibit strong electronic coupling, extended coherent lifetimes, and long-range exciton delocalization under appropriate conditions. Certain cyanine dyes such as pseudoisocyanine (PIC) dye have shown a proclivity to form aggregates in specific DNA sequences. In particular, DX-tiles containing nonalternating poly(dA)-poly(dT) dinucleotide tracks (AT-tracks), which template noncovalent PIC dye aggregates, have been demonstrated to exhibit interesting emergent photonic properties. These DNA-based aggregates are referred to as J-bits for their similarity to J-aggregates. Here, we assemble multifluorophore DX-tile scaffolds which template J-bits into both contiguous and noncontiguous linear arrays. Our goal is to understand the relay capability of noncontiguous J-bit arrays and probe the effects that orientation and position have on the energy transfer between them. We find that linearly contiguous J-bits can relay excitons from an initial AlexaFluor 405 donor to a terminal AlexaFluor 647 acceptor across a distance of up to 16.3 nm. We observed a maximum increase in energy transfer of 41% in the shortest scaffold and an 11% increase in energy transfer across the maximum distance. However, in nonlinear arrays, exciton transfer is not detectable, even when off-axis J-bit-to-J-bit transfer distances were <2 nm. These results, in conjunction with the previous work on PIC-DNA systems, suggest that PIC-DNA-based systems may currently be limited to simple 1-D designs, which prevent isolating J-bits for enhanced energy-transfer characteristics until further understanding and improvements to the system can be made.


Subject(s)
Nanostructures , Quinolines , Coloring Agents , DNA
7.
ACS Nano ; 15(5): 9101-9110, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33955735

ABSTRACT

DNA nanotechnology has proven to be a powerful strategy for the bottom-up preparation of colloidal nanoparticle (NP) superstructures, enabling the coordination of multiple NPs with orientation and separation approaching nanometer precision. To do this, NPs are often conjugated with chemically modified, single-stranded (ss) DNA that can recognize complementary ssDNA on the DNA nanostructure. The limitation is that many NPs cannot be easily conjugated with ssDNA, and other conjugation strategies are expensive, inefficient, or reduce the specificity and/or precision with which NPs can be placed. As an alternative, the conjugation of nanoparticle-binding peptides and peptide nucleic acids (PNA) can produce peptide-PNA with distinct NP-binding and DNA-binding domains. Here, we demonstrate a simple application of this method to conjugate semiconductor quantum dots (QDs) directly to DNA nanostructures by means of a peptide-PNA with a six-histidine peptide motif that binds to the QD surface. With this method, we achieved greater than 90% capture efficiency for multiple QDs on a single DNA nanostructure while preserving both site specificity and precise spatial control of QD placement. Additionally, we investigated the effects of peptide-PNA charge on the efficacy of QD immobilization in suboptimal conditions. The results validate peptide-PNA as a viable alternative to ssDNA conjugation of NPs and warrant studies of other NP-binding peptides for peptide-PNA conjugation.


Subject(s)
Nanostructures , Peptide Nucleic Acids , Quantum Dots , DNA , Peptides
8.
ACS Nano ; 14(7): 8570-8583, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32677822

ABSTRACT

Femtosecond (fs) laser pulsed excitation of plasmonic nanoparticle (NP)-biomolecule conjugates is a promising method to locally heat biological materials. Studies have demonstrated that fs pulses of light can modulate the activity of DNA or proteins when attached to plasmonic NPs; however, the precision over subsequent biological function remains largely undetermined. Specifically, the temperature the localized biomolecules "experience" remains unknown. We used 55 nm gold nanoparticles (AuNPs) displaying double-stranded (ds) DNA to examine how, for dsDNA with different melting temperatures, the laser pulse energy fluence and bulk solution temperature affect the rate of local DNA denaturation. A universal "template" single-stranded DNA was attached to the AuNP surface, and three dye-labeled probe strands, distinct in length and melting temperature, were hybridized to it creating three individual dsDNA-AuNP bioconjugates. The dye-labeled probe strands were used to quantify the rate and amount of DNA release after a given number of light pulses, which was then correlated to the dsDNA denaturation temperature, resulting in a quantitative nanothermometer. The localized DNA denaturation rate could be modulated by more than threefold over the biologically relevant range of 8-53 °C by varying pulse energy fluence, DNA melting temperature, and surrounding bath temperature. With a modified dissociation equation tailored for this system, a "sensed" temperature parameter was extracted and compared to simulated AuNP temperature profiles. Determining actual biological responses in such systems can allow researchers to design precision nanoscale photothermal heating sources.


Subject(s)
Gold , Metal Nanoparticles , DNA , Lasers , Temperature
9.
ACS Nano ; 14(3): 2659-2677, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32078291

ABSTRACT

The interfacing of nanoparticle (NP) materials with cells, tissues, and organisms for a range of applications including imaging, sensing, and drug delivery continues at a rampant pace. An emerging theme in this area is the use of NPs and nanostructured surfaces for the imaging and/or control of cellular membrane potential (MP). Given the important role that MP plays in cellular biology, both in normal physiology and in disease, new materials and methods are continually being developed to probe the activity of electrically excitable cells such as neurons and muscle cells. In this Review, we highlight the current state of the art for both the visualization and control of MP using traditional materials and techniques, discuss the advantageous features of NPs for performing these functions, and present recent examples from the literature of how NP materials have been implemented for the visualization and control of the activity of electrically excitable cells. We conclude with a forward-looking perspective of how we expect to see this field progress in the near term and further into the future.


Subject(s)
Cell Membrane/chemistry , Muscles/chemistry , Nanoparticles/chemistry , Neurons/chemistry , Humans , Membrane Potentials , Muscles/cytology , Neurons/cytology
10.
J Phys Chem Lett ; 9(13): 3654-3659, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29893572

ABSTRACT

Molecular photonic wires (MPWs) are tunable nanophotonic structures capable of capturing and directing light with high transfer efficiencies. DNA-based assembly techniques provide a simple and economical preparation method for MPWs that allows precise positioning of the molecular transfer components. Unfortunately, the longest DNA-based MPWs (∼30 nm) report only modest transfer efficiencies of ∼2% and have not been demonstrated on solid-state platforms. Here, we demonstrate that DNA-based MPWs can be spin-coated in a polymer matrix onto silicon wafers and exhibit a 5-fold increase in photonic transfer efficiency over solution-phase MPWs. Cooling these MPWs to 5 K led to further efficiency increases ranging from ∼40 to 240% depending on the length of the MPW. The improvement of MPW energy transport efficiencies advances prospects for their incorporation in a variety of optoelectronics technologies and makes them an ideal test bed for further exploration of nanoscale energy transfer.

11.
J Mater Chem B ; 5(39): 7907-7926, 2017 Oct 21.
Article in English | MEDLINE | ID: mdl-32264193

ABSTRACT

Ultrasmall noble metal and especially gold nanoclusters (AuNCs, ≤2 nm diameter in size) display a range of unique quantum confined and photophysical properties which are far different from their larger-sized nanoparticle counterparts or that of the bulk parent material. Amongst these properties, the photoluminescence of gold AuNCs has stimulated much interest for biological applications due to a combination of their small size, high photostability and range of emissions depending on size and surface stabilizing ligands, including near-IR emission. The dearth of robust Förster resonance energy transfer (FRET) donors and acceptors available to populate the latter spectral range is also driving strong interest in applying AuNCs for similar utility and especially for biosensing. However, the exact mechanism of how AuNCs engage in this type of energy transfer (ET) is still not defined and accumulating evidence indicates that it is not by a classical Förster process although, interestingly, many of the same characteristics and photophysical requirements seem to be present and even many-times required. Here, we summarize the state of the art in AuNC ET studies with a special emphasis on relevance to biological utility ranging from diagnostics to distance measurements along with describing the different ET mechanisms that have been ascribed with their use. Due to its corresponding importance in this discussion, we provide a brief overview of how these materials are synthesized, the current understanding of how their photoluminescence originates, and some related information on silver nanocluster (AgNC) ET along with related processes such as chemically-induced ET. A perspective and outlook on how this area will develop in the future is also provided.

SELECTION OF CITATIONS
SEARCH DETAIL
...