Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Oncol ; 31(12): 1725-1733, 2020 12.
Article in English | MEDLINE | ID: mdl-33007380

ABSTRACT

BACKGROUND: Rearranged during transfection (RET) gene fusions are a validated target in non-small-cell lung cancer (NSCLC). RET-selective inhibitors selpercatinib (LOXO-292) and pralsetinib (BLU-667) recently demonstrated favorable antitumor activity and safety profiles in advanced RET fusion-positive NSCLC, and both have received approval by the US Food and Drug Administration for this indication. Insights into mechanisms of resistance to selective RET inhibitors remain limited. PATIENTS AND METHODS: This study was performed at five institutions. Tissue and/or cell-free DNA was obtained from patients with RET fusion-positive NSCLC after treatment with selpercatinib or pralsetinib and assessed by next-generation sequencing (NGS) or MET FISH. RESULTS: We analyzed a total of 23 post-treatment tissue and/or plasma biopsies from 18 RET fusion-positive patients who received an RET-selective inhibitor (selpercatinib, n = 10; pralsetinib, n = 7; pralsetinib followed by selpercatinib, n = 1, with biopsy after each inhibitor). Three cases had paired tissue and plasma samples, of which one also had two serial resistant tissue specimens. The median progression-free survival on RET inhibitors was 6.3 months [95% confidence interval 3.6-10.8 months]. Acquired RET mutations were identified in two cases (10%), both affecting the RET G810 residue in the kinase solvent front. Three resistant cases (15%) harbored acquired MET amplification without concurrent RET resistance mutations, and one specimen had acquired KRAS amplification. No other canonical driver alterations were identified by NGS. Among 16 resistant tumor specimens, none had evidence of squamous or small-cell histologic transformation. CONCLUSIONS: RET solvent front mutations are a recurrent mechanism of RET inhibitor resistance, although they occurred at a relatively low frequency. The majority of resistance to selective RET inhibition may be driven by RET-independent resistance such as acquired MET or KRAS amplification. Next-generation RET inhibitors with potency against RET resistance mutations and combination strategies are needed to effectively overcome resistance in these patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-ret/genetics , Pyrazoles , Pyridines , Pyrimidines , Tyrosine
2.
Oncogene ; 36(47): 6581-6591, 2017 11 23.
Article in English | MEDLINE | ID: mdl-28783173

ABSTRACT

There are currently no effective targeted therapies for KRAS mutant cancers. Therapeutic strategies that combine MEK inhibitors with agents that target apoptotic pathways may be a promising therapeutic approach. We investigated combining MEK and MDM2 inhibitors as a potential treatment strategy for KRAS mutant non-small cell lung cancers (NSCLC) and colorectal carcinomas that harbor wild-type TP53. The combination of pimasertib (MEK inhibitor) and SAR405838 (MDM2 inhibitor) was synergistic and induced the expression of PUMA and BIM, led to apoptosis and growth inhibition in vitro, and tumor regression in vivo. Acquired resistance to the combination commonly resulted from the acquisition of TP53 mutations, conferring complete resistance to MDM2 inhibition. In contrast, resistant clones exhibited marked variability in sensitivity to MEK inhibition, which significantly impacted sensitivity to subsequent treatment with alternative MEK inhibitor-based combination therapies. These results highlight both the potential promise and limitations of combining MEK and MDM2 inhibitors for treatment of KRAS mutant NSCLC and colorectal cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , MAP Kinase Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics , A549 Cells , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11/genetics , Bcl-2-Like Protein 11/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Cell Proliferation , Colorectal Neoplasms/genetics , Drug Synergism , Gene Knockdown Techniques , HCT116 Cells , Humans , Indoles , Lung Neoplasms/genetics , MAP Kinase Signaling System , Mice , Mice, Nude , Mutation , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , RNA Interference , RNA, Small Interfering , Spiro Compounds , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...