Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; 4(5): 101020, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37080205

ABSTRACT

The excitatory glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) contribute to epileptogenesis. Thirty patients with epilepsy and 31 healthy controls are scanned using positron emission tomography with our recently developed radiotracer for AMPARs, [11C]K-2, which measures the density of cell-surface AMPARs. In patients with focal-onset seizures, an increase in AMPAR trafficking augments the amplitude of abnormal gamma activity detected by electroencephalography. In contrast, patients with generalized-onset seizures exhibit a decrease in AMPARs coupled with increased amplitude of abnormal gamma activity. Patients with epilepsy had reduced AMPAR levels compared with healthy controls, and AMPARs are reduced in larger areas of the cortex in patients with generalized-onset seizures compared with those with focal-onset seizures. Thus, epileptic brain function can be regulated by the enhanced trafficking of AMPAR due to Hebbian plasticity with increased simultaneous neuronal firing and compensational downregulation of cell-surface AMPARs by the synaptic scaling.


Subject(s)
Epilepsy , Receptors, AMPA , Humans , Receptors, AMPA/physiology , Neurons , Seizures
2.
Brain Commun ; 4(2): fcac023, 2022.
Article in English | MEDLINE | ID: mdl-35415605

ABSTRACT

Presurgical identification of the epileptogenic zone is a critical determinant of seizure control following surgical resection in epilepsy. Excitatory glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor is a major component of neurotransmission. Although elevated α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor levels are observed in surgically resected brain areas of patients with epilepsy, it remains unclear whether increased α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor-mediated currents initiate epileptic discharges. We have recently developed the first PET tracer for α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor, [11C]K-2, to visualize and quantify the density of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors in living human brains. Here, we detected elevated [11C]K-2 uptake in the epileptogenic temporal lobe of patients with mesial temporal lobe epilepsy. Brain areas with high [11C]K-2 uptake are closely colocalized with the location of equivalent current dipoles estimated by magnetoencephalography or with seizure onset zones detected by intracranial electroencephalogram. These results suggest that epileptic discharges initiate from brain areas with increased α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors, providing a biological basis for epileptic discharges and an additional non-invasive option to identify the epileptogenic zone in patients with mesial temporal lobe epilepsy.

3.
Sci Rep ; 11(1): 1598, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452361

ABSTRACT

[11C]K-2, a radiotracer exhibiting high affinity and selectivity for α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), is suitable for the quantification of AMPARs in living human brains and potentially useful in the identification of epileptogenic foci in patients. This study aimed to estimate the radiation doses of [11C]K-2 in various organs and calculate the effective dose after injection of [11C]K-2 in healthy human subjects. Twelve healthy male subjects were registered and divided into two groups (370 or 555 MBq of [11C]K-2), followed by 2 h whole-body scans. We estimated the radiation dose of each organ and then calculated the effective dose for each subject. The highest uptake of [11C]K-2 was observed in the liver, while the brain also showed relatively high uptake. The urinary bladder exhibited the highest radiation dose. The kidneys and liver also showed high radiation doses after [11C]K-2 injections. The effective dose of [11C]K-2 ranged from 5.0 to 5.2 µSv/MBq. Our findings suggest that [11C]K-2 is safe in terms of the radiation dose and adverse effects. The injection of 370-555 MBq (10 to 15 mCi) for PET studies using this radiotracer is applicable in healthy human subjects and enables serial PET scans in a single subject.


Subject(s)
Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Receptors, AMPA/metabolism , Adult , Carbon Radioisotopes/chemistry , Healthy Volunteers , Humans , Kidney/chemistry , Kidney/metabolism , Liver/chemistry , Liver/metabolism , Male , Radiometry , Radiopharmaceuticals/pharmacokinetics , Receptors, AMPA/chemistry , Tissue Distribution , Urinary Bladder/chemistry , Urinary Bladder/metabolism , Young Adult
4.
Nat Med ; 26(2): 281-288, 2020 02.
Article in English | MEDLINE | ID: mdl-31959988

ABSTRACT

Although aberrations in the number and function of glutamate AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors are thought to underlie neuropsychiatric disorders, no methods are currently available for visualizing AMPA receptors in the living human brain. Here we developed a positron emission tomography (PET) tracer for AMPA receptors. A derivative of 4-[2-(phenylsulfonylamino)ethylthio]-2,6-difluoro-phenoxyacetamide radiolabeled with 11C ([11C]K-2) showed specific binding to AMPA receptors. Our clinical trial with healthy human participants confirmed reversible binding of [11C]K-2 in the brain according to Logan graphical analysis (UMIN000020975; study design: non-randomized, single arm; primary outcome: dynamics and distribution volumes of [11C]K-2 in the brain; secondary outcome: adverse events of [11C]K-2 during the 4-10 d following dosing; this trial met prespecified endpoints). In an exploratory clinical study including patients with epilepsy, we detected increased [11C]K-2 uptake in the epileptogenic focus of patients with mesial temporal lobe epilepsy, which was closely correlated with the local AMPA receptor protein distribution in surgical specimens from the same individuals (UMIN000025090; study design: non-randomized, single arm; primary outcome: correlation between [11C]K-2 uptake measured with PET before surgery and AMPA receptor protein density examined by biochemical study after surgery; secondary outcome: adverse events during the 7 d following PET scan; this trial met prespecified endpoints). Thus, [11C]K-2 is a potent PET tracer for AMPA receptors, potentially providing a tool to examine the involvement of AMPA receptors in neuropsychiatric disorders.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Carbon Radioisotopes/chemistry , Phenoxyacetates/pharmacokinetics , Receptors, AMPA/metabolism , Adult , Animals , Chromatography, Liquid , Female , Healthy Volunteers , Humans , Male , Positron-Emission Tomography , Protein Binding , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Tomography, Emission-Computed, Single-Photon , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...