Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Article in English | MEDLINE | ID: mdl-38715792

ABSTRACT

Data scarcity and data imbalance are two major challenges in training deep learning models on medical images, such as brain tumor MRI data. The recent advancements in generative artificial intelligence have opened new possibilities for synthetically generating MRI data, including brain tumor MRI scans. This approach can be a potential solution to mitigate the data scarcity problem and enhance training data availability. This work focused on adapting the 2D latent diffusion models to generate 3D multi-contrast brain tumor MRI data with a tumor mask as the condition. The framework comprises two components: a 3D autoencoder model for perceptual compression and a conditional 3D Diffusion Probabilistic Model (DPM) for generating high-quality and diverse multi-contrast brain tumor MRI samples, guided by a conditional tumor mask. Unlike existing works that focused on generating either 2D multi-contrast or 3D single-contrast MRI samples, our models generate multi-contrast 3D MRI samples. We also integrated a conditional module within the UNet backbone of the DPM to capture the semantic class-dependent data distribution driven by the provided tumor mask to generate MRI brain tumor samples based on a specific brain tumor mask. We trained our models using two brain tumor datasets: The Cancer Genome Atlas (TCGA) public dataset and an internal dataset from the University of Texas Southwestern Medical Center (UTSW). The models were able to generate high-quality 3D multi-contrast brain tumor MRI samples with the tumor location aligned by the input condition mask. The quality of the generated images was evaluated using the Fréchet Inception Distance (FID) score. This work has the potential to mitigate the scarcity of brain tumor data and improve the performance of deep learning models involving brain tumor MRI data.

2.
Clin Case Rep ; 11(10): e7896, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37860048

ABSTRACT

Rhodotorula is a rare pathogen seen in the immunocompromised host; while cases of Rhodotorula meningitis have been reported, there are no published cases of Rhodotorula brain abscess. We describe the diagnosis and management of a woman with common variable immune deficiency presenting with concomitant Rhodotorula and Nocardia brain abscesses.

3.
Bioengineering (Basel) ; 10(9)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37760146

ABSTRACT

Isocitrate dehydrogenase (IDH) mutation status has emerged as an important prognostic marker in gliomas. This study sought to develop deep learning networks for non-invasive IDH classification using T2w MR images while comparing their performance to a multi-contrast network. Methods: Multi-contrast brain tumor MRI and genomic data were obtained from The Cancer Imaging Archive (TCIA) and The Erasmus Glioma Database (EGD). Two separate 2D networks were developed using nnU-Net, a T2w-image-only network (T2-net) and a multi-contrast network (MC-net). Each network was separately trained using TCIA (227 subjects) or TCIA + EGD data (683 subjects combined). The networks were trained to classify IDH mutation status and implement single-label tumor segmentation simultaneously. The trained networks were tested on over 1100 held-out datasets including 360 cases from UT Southwestern Medical Center, 136 cases from New York University, 175 cases from the University of Wisconsin-Madison, 456 cases from EGD (for the TCIA-trained network), and 495 cases from the University of California, San Francisco public database. A receiver operating characteristic curve (ROC) was drawn to calculate the AUC value to determine classifier performance. Results: T2-net trained on TCIA and TCIA + EGD datasets achieved an overall accuracy of 85.4% and 87.6% with AUCs of 0.86 and 0.89, respectively. MC-net trained on TCIA and TCIA + EGD datasets achieved an overall accuracy of 91.0% and 92.8% with AUCs of 0.94 and 0.96, respectively. We developed reliable, high-performing deep learning algorithms for IDH classification using both a T2-image-only and a multi-contrast approach. The networks were tested on more than 1100 subjects from diverse databases, making this the largest study on image-based IDH classification to date.

4.
J Neurosurg Case Lessons ; 6(12)2023 09 18.
Article in English | MEDLINE | ID: mdl-37756483

ABSTRACT

BACKGROUND: Traumatic neuroma typically refers to a reactive process in the injured peripheral nerve, characterized by an excessive growth of axons, Schwann cells, and fibroblasts at the proximal end of the nerve after its interruption. The authors report a case of a traumatic neuroma in the cervical nerve root in a patient with no history of trauma. OBSERVATIONS: The patient presented with sensation loss in the right-hand ulnar distribution, right flank around the T4-11 region, and right small toe along with motor power weakness over the right upper and lower extremity. Magnetic resonance imaging revealed an intradural extramedullary mass lesion with extension along the C7 nerve root. Histological examination showed traumatic neuroma. A total resection of the lesion along with the resolution of sensory and motor deficits was achieved directly after surgery. LESSONS: Traumatic neuroma should always be kept in the armamentarium for diagnosis of an intradural nerve sheath tumor.

5.
Neurooncol Adv ; 5(1): vdad085, 2023.
Article in English | MEDLINE | ID: mdl-37554222

ABSTRACT

Background: Mutations in mismatch repair (MMR) genes (MSH2, MSH6, MLH1, and PMS2) are associated with microsatellite instability and a hypermutator phenotype in numerous systemic cancers, and germline MMR mutations have been implicated in multi-organ tumor syndromes. In gliomas, MMR mutations can function as an adaptive response to alkylating chemotherapy, although there are well-documented cases of germline and sporadic mutations, with detrimental effects on patient survival. Methods: The clinical, pathologic, and molecular features of 18 IDH-mutant astrocytomas and 20 IDH-wild-type glioblastomas with MMR mutations in the primary tumor were analyzed in comparison to 361 IDH-mutant and 906 IDH-wild-type tumors without MMR mutations. In addition, 12 IDH-mutant astrocytomas and 18 IDH-wild-type glioblastomas that developed MMR mutations between initial presentation and tumor recurrence were analyzed in comparison to 50 IDH-mutant and 104 IDH-wild-type cases that remained MMR-wild-type at recurrence. Results: In both IDH-mutant astrocytoma and IDH-wild-type glioblastoma cohorts, the presence of MMR mutation in primary tumors was associated with significantly higher tumor mutation burden (TMB) (P < .0001); however, MMR mutations only resulted in worse overall survival in the IDH-mutant astrocytomas (P = .0069). In addition, gain of MMR mutation between the primary and recurrent surgical specimen occurred more frequently with temozolomide therapy (P = .0073), and resulted in a substantial increase in TMB (P < .0001), higher grade (P = .0119), and worse post-recurrence survival (P = .0022) in the IDH-mutant astrocytoma cohort. Conclusions: These results suggest that whether present initially or in response to therapy, MMR mutations significantly affect TMB but appear to only influence the clinical outcome in IDH-mutant astrocytoma subsets.

6.
Front Endocrinol (Lausanne) ; 13: 1024108, 2022.
Article in English | MEDLINE | ID: mdl-36440216

ABSTRACT

Genetic testing has become the standard of care for many disease states. As a result, physicians treating patients who have tumors often rely on germline genetic testing results for making clinical decisions. Cases of two sisters carrying a germline CHEK2 variant are highlighted whereby possible other genetic drivers were discovered on tumor analysis. CHEK2 (also referred to as CHK2) loss of function has been firmly associated with breast cancer development. In this case report, two siblings with a germline CHEK2 mutation also had distinct endocrine tumors. Pituitary adenoma and pancreatic neuroendocrine tumor (PNET) was found in the first sibling and pheochromocytoma (PCC) discovered in the second sibling. Although pituitary adenomas, PNETs, and PCC have been associated with NF1 gene mutations, the second sister with a PCC did have proven germline CHEK2 with a pathogenic somatic NF1 mutation. We highlight the clinical point that unless the tumor is sequenced, the real driver mutation that is causing the patient's tumor may remain unknown.


Subject(s)
Adrenal Gland Neoplasms , Pheochromocytoma , Pituitary Neoplasms , Humans , Female , Siblings , Checkpoint Kinase 2/genetics
7.
Acta Neuropathol Commun ; 10(1): 115, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35978439

ABSTRACT

Chromosomal instability (CIN) is a fundamental property of cancer and a key underlying mechanism of tumorigenesis and malignant progression, and has been documented in a wide variety of cancers, including colorectal carcinoma with mutations in genes such as APC. Recent reports have demonstrated that CIN, driven in part by mutations in genes maintaining overall genomic stability, is found in subsets of adult-type diffusely infiltrating gliomas of all histologic and molecular grades, with resulting elevated overall copy number burden, chromothripsis, and poor clinical outcome. Still, relatively few studies have examined the effect of this process, due in part to the difficulty of routinely measuring CIN clinically. Herein, we review the underlying mechanisms of CIN, the relationship between chromosomal instability and malignancy, the prognostic significance and treatment potential in various cancers, systemic disease, and more specifically, in diffusely infiltrating glioma subtypes. While still in the early stages of discovery compared to other solid tumor types in which CIN is a known driver of malignancy, the presence of CIN as an early factor in gliomas may in part explain the ability of these tumors to develop resistance to standard therapy, while also providing a potential molecular target for future therapies.


Subject(s)
Chromothripsis , Glioma , Adult , Chromosomal Instability/genetics , Glioma/genetics , Humans , Mutation/genetics , Prognosis
8.
Nat Cell Biol ; 24(8): 1291-1305, 2022 08.
Article in English | MEDLINE | ID: mdl-35915159

ABSTRACT

The epidermal growth factor receptor (EGFR) is a prime oncogene that is frequently amplified in glioblastomas. Here we demonstrate a new tumour-suppressive function of EGFR in EGFR-amplified glioblastomas regulated by EGFR ligands. Constitutive EGFR signalling promotes invasion via activation of a TAB1-TAK1-NF-κB-EMP1 pathway, resulting in large tumours and decreased survival in orthotopic models. Ligand-activated EGFR promotes proliferation and surprisingly suppresses invasion by upregulating BIN3, which inhibits a DOCK7-regulated Rho GTPase pathway, resulting in small hyperproliferating non-invasive tumours and improved survival. Data from The Cancer Genome Atlas reveal that in EGFR-amplified glioblastomas, a low level of EGFR ligands confers a worse prognosis, whereas a high level of EGFR ligands confers an improved prognosis. Thus, increased EGFR ligand levels shift the role of EGFR from oncogene to tumour suppressor in EGFR-amplified glioblastomas by suppressing invasion. The tumour-suppressive function of EGFR can be activated therapeutically using tofacitinib, which suppresses invasion by increasing EGFR ligand levels and upregulating BIN3.


Subject(s)
Glioblastoma , Microfilament Proteins/metabolism , Cell Line, Tumor , ErbB Receptors/genetics , ErbB Receptors/metabolism , Glioblastoma/metabolism , Humans , Ligands , Oncogenes/genetics , Up-Regulation
9.
Cancer Inform ; 21: 11769351221100754, 2022.
Article in English | MEDLINE | ID: mdl-35652106

ABSTRACT

The creation of patient-derived cancer organoids represents a key advance in preclinical modeling and has recently been applied to a variety of human solid tumor types. However, conventional methods used to assess in vivo tumor tissue treatment response are poorly suited for the evaluation of cancer organoids because they are time-intensive and involve tissue destruction. To address this issue, we established a suite of 3-dimensional patient-derived glioma organoids, treated them with chemoradiotherapy, stained organoids with non-toxic cell dyes, and imaged them using a rapid laser scanning confocal microscopy method termed "Apex Imaging." We then developed and tested a fragmentation algorithm to quantify heterogeneity in the topography of the organoids as a potential surrogate marker of viability. This algorithm, SSDquant, provides a 3-dimensional visual representation of the organoid surface and a numerical measurement of the sum-squared distance (SSD) from the derived mass center of the organoid. We tested whether SSD scores correlate with traditional immunohistochemistry-derived cell viability markers (cellularity and cleaved caspase 3 expression) and observed statistically significant associations between them using linear regression analysis. Our work describes a quantitative, non-invasive approach for the serial measurement of patient-derived cancer organoid viability, thus opening new avenues for the application of these models to studies of cancer biology and therapy.

10.
Cancer Res ; 82(13): 2388-2402, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35499760

ABSTRACT

Branched-chain amino acid transaminase 1 (BCAT1) is upregulated selectively in human isocitrate dehydrogenase (IDH) wildtype (WT) but not mutant glioblastoma multiforme (GBM) and promotes IDHWT GBM growth. Through a metabolic synthetic lethal screen, we report here that α-ketoglutarate (AKG) kills IDHWT GBM cells when BCAT1 protein is lost, which is reversed by reexpression of BCAT1 or supplementation with branched-chain α-ketoacids (BCKA), downstream metabolic products of BCAT1. In patient-derived IDHWT GBM tumors in vitro and in vivo, cotreatment of BCAT1 inhibitor gabapentin and AKG resulted in synthetic lethality. However, AKG failed to evoke a synthetic lethal effect with loss of BCAT2, BCKDHA, or GPT2 in IDHWT GBM cells. Mechanistically, loss of BCAT1 increased the NAD+/NADH ratio but impaired oxidative phosphorylation, mTORC1 activity, and nucleotide biosynthesis. These metabolic alterations were synergistically augmented by AKG treatment, thereby causing mitochondrial dysfunction and depletion of cellular building blocks, including ATP, nucleotides, and proteins. Partial restoration of ATP, nucleotides, proteins, and mTORC1 activity by BCKA supplementation prevented IDHWT GBM cell death conferred by the combination of BCAT1 loss and AKG. These findings define a targetable metabolic vulnerability in the most common subset of GBM that is currently incurable. SIGNIFICANCE: Metabolic synthetic lethal screening in IDHWT glioblastoma defines a vulnerability to ΑΚG following BCAT1 loss, uncovering a therapeutic strategy to improve glioblastoma treatment. See related commentary by Meurs and Nagrath, p. 2354.


Subject(s)
Glioblastoma , Adenosine Triphosphate , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Ketoglutaric Acids/pharmacology , Mechanistic Target of Rapamycin Complex 1 , Nucleotides , Synthetic Lethal Mutations , Transaminases/genetics , Transaminases/metabolism
11.
Neuroradiology ; 64(9): 1795-1800, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35426054

ABSTRACT

PURPOSE: Subependymomas located within the 4th ventricle are rare, and the literature describing imaging characteristics is sparse. Here, we describe the clinical and radiological characteristics of 29 patients with 4th ventricle subependymoma. METHODS: This is a retrospective multi-center study performed after Institutional Review Board (IRB) approval. Patients diagnosed with suspected 4th ventricle subependymoma were identified. A review of clinical, radiology, and pathology reports along with magnetic resonance imaging (MRI) images was performed. RESULTS: Twenty-nine patients, including 6 females, were identified. Eighteen patients underwent surgery with histopathological confirmation of subependymoma. The median age at diagnosis was 52 years. Median tumor volume for the operative cohort was 9.87 cm3, while for the non-operative cohort, it was 0.96 cm3. Thirteen patients in the operative group exhibited symptoms at diagnosis. For the total cohort, the majority of subependymomas (n = 22) were isointense on T1, hyperintense (n = 22) on T2, and enhanced (n = 24). All tumors were located just below the body of the 4th ventricle, terminating near the level of the obex. Fourteen cases demonstrated extension of tumor into foramen of Magendie or Luschka. CONCLUSION: To the best of our knowledge, this is the largest collection of 4th ventricular subependymomas with imaging findings reported to date. All patients in this cohort had tumors originating between the bottom of the body of the 4th ventricle and the obex. This uniform and specific site of origin aids with imaging diagnosis and may infer possible theories of origin.


Subject(s)
Glioma, Subependymal , Female , Fourth Ventricle/pathology , Glioma, Subependymal/diagnostic imaging , Glioma, Subependymal/pathology , Glioma, Subependymal/surgery , Humans , Magnetic Resonance Imaging , Multicenter Studies as Topic , Radiography , Tumor Burden
12.
Acta Neuropathol Commun ; 10(1): 56, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440040

ABSTRACT

Chordoid meningioma is a morphological variant of meningioma designated as WHO grade 2. However, the recurrence rates varied widely in different case series, and to date, a unifying molecular genetic signature has not been identified. Among 1897 meningiomas resected at our institution, we identified 12 primary chordoid meningiomas from 12 patients. Histologically, all 12 cases had predominant (> 50%) chordoid morphology. Ten were otherwise grade 1, and two were also atypical. We performed DNA global methylation profile, copy number variation analysis, and targeted next-generation sequencing on 11 chordoid meningiomas, and compared to those of 51 non-chordoid, mostly high grade meningiomas. The chordoid meningiomas demonstrated a unique methylation profile in tSNE, UMAP, and hierarchical heatmap clustering analyses of the most differentially methylated CpGs. The most common copy number variation in chordoid meningioma was loss of 1p (7/11, 64%). Three chordoid meningiomas had 2p loss, which was significantly higher than the non-chordoid control cohort (27% vs 7.2%, p = 0.035). 22q loss was only seen in the two cases with additional atypical histological features. Chordoid meningiomas were enriched in mutations in chromatin remodeling genes EP400 (8/11,73%) KMT2C (4/11, 36%) and KMT2D (4/11, 36%), and showed low or absent NF2, TERT, SMO, and AKT1 mutations. Prognosis wise, only one case recurred. This case had atypical histology and high-grade molecular features including truncating NF2 mutation, 1p, 8p, 10, 14, 22q loss, and homozygous deletion of CDKN2A/B. Progression free survival of chordoid, otherwise grade 1 meningioma was comparable to non-chordoid WHO grade 1 meningioma (p = 0.75), and significantly better than chordoid WHO grade 2 meningioma (p = 0.019). Conclusion: the chordoid histology alone may not justify a universal WHO grade 2 designation. Screening for additional atypical histological or molecular genetic features is recommended.


Subject(s)
Meningeal Neoplasms , Meningioma , DNA Copy Number Variations , Epigenesis, Genetic , Homozygote , Humans , Meningeal Neoplasms/diagnosis , Meningeal Neoplasms/genetics , Meningeal Neoplasms/surgery , Meningioma/diagnosis , Meningioma/genetics , Meningioma/surgery , Sequence Deletion
14.
Acta Neuropathol Commun ; 10(1): 32, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264242

ABSTRACT

Diffusely infiltrating gliomas are among the most common central nervous system tumors in adults. Over the past decade, the subcategorization of these tumors has changed to include both traditional histologic features and more recently identified molecular factors. However, one molecular feature that has yet to be integrated is the presence/absence of chromosomal instability (CIN). Herein, we use global methylation profiling to evaluate a reference cohort of IDH-mutant astrocytomas with and without prior evidence of CIN (n = 42), and apply the resulting methylation-based characteristics to a larger test cohort of publicly-available IDH-mutant astrocytomas (n = 245). We demonstrate that IDH-mutant astrocytomas with evidence of CIN cluster separately from their chromosomally-stable counterparts. CIN cases were associated with higher initial histologic grade, altered expression patterns of genes related to CIN in other cancers, elevated initial total copy number burden, and significantly worse progression-free and overall survival. In addition, in a grade-for-grade analysis, patients with CIN-positive WHO grade 2 and 3 tumors had significantly worse survival. These results suggest that global methylation profiling can be used to discriminate between chromosomally stable and unstable IDH-mutant astrocytomas, and may therefore provide a reliable and cost-effective method for identifying gliomas with chromosomal instability and resultant poor clinical outcome.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Adult , Astrocytoma/pathology , Brain Neoplasms/pathology , Chromosomal Instability/genetics , DNA Methylation , Glioma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Mutation/genetics
15.
Oper Neurosurg (Hagerstown) ; 22(3): 131-143, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35030115

ABSTRACT

BACKGROUND: Distant spread of pituitary adenoma outside the sellar/suprasellar region is classified as pituitary carcinoma. Cerebrospinal fluid (CSF)-born spread of pituitary adenoma can occur after tumor cell spillage into the CSF space after surgery, irradiation, or apoplexy and is not necessarily related to intrinsic tumor biology. OBJECTIVE: To systematically review the literature and describe the clinical characteristics and treatment strategies of patients with pituitary carcinomas. We further present 2 cases from our institution. METHODS: A single-center retrospective review of patients with pituitary adenoma spread to distant intracranial locations between 2000 and 2020 was performed. Electronic databases were searched from their inception to May 25, 2021, and studies describing patients with pituitary spread to distant locations were included. RESULTS: Of 1210 pituitary adenoma cases reviewed, 2 (0.16%) showed tumor spread to distant locations. We found 134 additional cases (from 108 published articles) resulting in a total of 136 cases (61.9% were male). The time to tumor spread ranged between 0 and 516 months (median: 96 months). The follow-up duration ranged between 0 and 240 months (median: 11.5 months). All but 2 patients (98.5%) underwent surgical resection before adenoma spread. The 2 exceptions included a patient with evidence of an apoplectic event on autopsy and another patient with leptomeningeal pituitary spread but an unclear history of apoplexy. Elevated tumor markers were not linked to poor outcomes. CONCLUSION: Distant spread of pituitary adenoma may occur after surgery, irradiation, or apoplexy. It is not necessarily associated with a malignant clinical course.


Subject(s)
Adenoma , Pituitary Apoplexy , Pituitary Neoplasms , Stroke , Adenoma/pathology , Humans , Male , Pituitary Apoplexy/complications , Pituitary Apoplexy/surgery , Pituitary Neoplasms/pathology , Retrospective Studies , Stroke/complications
16.
Clin Neuropathol ; 41(1): 35-40, 2022.
Article in English | MEDLINE | ID: mdl-34672256

ABSTRACT

Identification of molecular genetic alterations has become an important part of diagnosis and care of patients with brain tumors. Comparisons of immunohistochemistry (IHC) with DNA sequencing techniques have suggested that IHC is useful for identifying surrogates of mutations in gliomas; however, studies of the efficacy are relatively few. Our aim was to compare IHC in our neuropathology laboratory with a commercially available next-generation sequencing (NGS) platform, Tempus xT. We studied 212 immunohistochemically stained sections of gliomas to identify mutations of isocitrate dehydrogenase (IDH), p53, BRAF, the α-thalassemia/mental retardation syndrome X-linked protein (ATRX), and histone H3. Tempus xT NGS confirmed the IHC diagnosis of IDH1/R132H in 102 of 102 patients (100%), BRAF/V600E in 14 of 14 (100%) patients and H3/K27M in 10 of 10 (100%) patients. For p53, NGS confirmed the IHC diagnosis of mutation in 47 of 53 (87%) patients. For 6 patients, IHC was interpreted as wild-type while NGS indicated a mutation. NGS confirmed the IHC diagnosis of ATRX mutation in 29 of 31 (94%) patients. In 1 patient, IHC predicted a mutation that was not confirmed by NGS, and in another, IHC predicted wild-type, but NGS showed mutant. In 2 other patients, IHC diagnosis of ATRX mutation was equivocal; 1 was mutant and 1 was wild-type by NGS. Our single-center study suggests that IHC for IDH1/R132H, BRAF/V600E, and H3/K27M is highly reliable and may be used confidently in clinical practice. IHC for p53 and ATRX mutations is often reliable but possibly problematic, and genetic studies may be necessary to determine astrocytic or oligodendroglial differentiation.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Central Nervous System , Glioma/diagnosis , Glioma/genetics , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , Isocitrate Dehydrogenase/genetics , Molecular Biology , Mutation/genetics
17.
Neuro Oncol ; 24(4): 612-623, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34850183

ABSTRACT

BACKGROUND: Historically, creating patient-derived models of lower-grade glioma (LGG) has been challenging, contributing to few experimental platforms that support laboratory-based investigations of this disease. Although organoid modeling approaches have recently been employed to create in vitro models of high-grade glioma (HGG), it is unknown whether this approach can be successfully applied to LGG. METHODS: In this study, we developed an optimized protocol for the establishment of organoids from LGG primary tissue samples by utilizing physiologic (5%) oxygenation conditions and employed it to produce the first known suite of these models. To assess their fidelity, we surveyed key biological features of patient-derived organoids using metabolic, genomic, histologic, and lineage marker gene expression assays. RESULTS: Organoid models were created with a success rate of 91% (n = 20/22) from primary tumor samples across glioma histological subtypes and tumor grades (WHO Grades 1-4), and a success rate of 87% (13/15) for WHO Grade 1-3 tumors. Patient-derived organoids recapitulated stemness, proliferative, and tumor-stromal composition profiles of their respective parental tumor specimens. Cytoarchitectural, mutational, and metabolic traits of parental tumors were also conserved. Importantly, LGG organoids were maintained in vitro for weeks to months and reanimated after biobanking without loss of integrity. CONCLUSIONS: We report an efficient method for producing faithful in vitro models of LGG. New experimental platforms generated through this approach are well positioned to support preclinical studies of this disease, particularly those related to tumor immunology, tumor-stroma interactions, identification of novel drug targets, and personalized assessments of treatment response profiles.


Subject(s)
Brain Neoplasms , Glioma , Biological Specimen Banks , Brain Neoplasms/pathology , Glioma/pathology , Humans , Organoids/pathology
18.
J Neuropathol Exp Neurol ; 80(12): 1092-1098, 2021 12 29.
Article in English | MEDLINE | ID: mdl-34850045

ABSTRACT

A primitive neuronal component is a feature of some glioblastomas but defining molecular alterations of this histologic variant remains uncertain. We performed next-generation sequencing of 1500 tumor related genes on tissue from 9 patients with glioblastoma with a primitive component (G/PN) and analyzed 27 similar cases from the Cancer Genome Atlas (TCGA) dataset. Alterations in the RB pathway were identified in all of our patients' tumors and 81% of TCGA tumors with the retinoblastoma tumor suppressor gene (RB1) commonly affected. Although RB1 mutations were observed in some conventional glioblastomas, the allelic fractions of these mutations were significantly higher in tumors with a primitive neuronal component in both our and TCGA cohorts (median, 72% vs 25%, p < 0.001 and 80% vs 40%, p < 0.02, respectively). Further, in 78% of patients in our cohort, RB expression was lost by immunohistochemistry. Our findings indicate that alterations in the RB pathway are common in G/PNs and suggest that inactivation of RB1 may be a driving mechanism for the phenotype.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Retinoblastoma Binding Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Adult , Aged , Female , Humans , Male , Middle Aged , Mutation
19.
Surg Neurol Int ; 12: 465, 2021.
Article in English | MEDLINE | ID: mdl-34621580

ABSTRACT

BACKGROUND: Primary peripheral T-cell central nervous system lymphoma (PCNSL) is a rare, aggressive tumor that arises in the craniospinal axis and has an increased risk in individuals who are immunocompromised. This lesion often mimics other benign and malignant processes on radiographic imaging, leading to misdiagnosis and delays in treatment. We present a case of a patient with a history of Sjögren's syndrome and progressive neurologic symptoms who underwent craniotomy for diagnosis. CASE DESCRIPTION: A 61-year-old woman with a history of Sjögren's syndrome, progressive aphasia, left facial droop, and right-sided paresthesias for 4 months presented for evaluation and management. An enhancing, infiltrative lesion in the left frontal lobe with underlying vasogenic edema was appreciated and suggestive of a primary or metastatic neoplasm. The patient underwent an open biopsy for further evaluation of the lesion. Extensive histopathologic evaluation revealed a diagnosis of T-cell PCNSL. The patient was started on induction methotrexate and temozolomide followed by consolidative radiotherapy. CONCLUSION: Autoimmune conditions are a risk factor for T-cell PCNSL development. T-cell PCNSL has radiographic and gross histologic features that are consistent with a broad differential, including gliomas and inflammatory processes. Prompt diagnosis and extensive histopathological evaluation is essential to ensure appropriate treatment.

20.
Neurooncol Adv ; 3(1): vdab092, 2021.
Article in English | MEDLINE | ID: mdl-34355174

ABSTRACT

BACKGROUND: Glioblastoma remains incurable despite treatment with surgery, radiation therapy, and cytotoxic chemotherapy, prompting the search for a metabolic pathway unique to glioblastoma cells.13C MR spectroscopic imaging with hyperpolarized pyruvate can demonstrate alterations in pyruvate metabolism in these tumors. METHODS: Three patients with diagnostic MRI suggestive of a glioblastoma were scanned at 3 T 1-2 days prior to tumor resection using a 13C/1H dual-frequency RF coil and a 13C/1H-integrated MR protocol, which consists of a series of 1H MR sequences (T2 FLAIR, arterial spin labeling and contrast-enhanced [CE] T1) and 13C spectroscopic imaging with hyperpolarized [1-13C]pyruvate. Dynamic spiral chemical shift imaging was used for 13C data acquisition. Surgical navigation was used to correlate the locations of tissue samples submitted for histology with the changes seen on the diagnostic MR scans and the 13C spectroscopic images. RESULTS: Each tumor was histologically confirmed to be a WHO grade IV glioblastoma with isocitrate dehydrogenase wild type. Total hyperpolarized 13C signals detected near the tumor mass reflected altered tissue perfusion near the tumor. For each tumor, a hyperintense [1-13C]lactate signal was detected both within CE and T2-FLAIR regions on the 1H diagnostic images (P = .008). [13C]bicarbonate signal was maintained or decreased in the lesion but the observation was not significant (P = .3). CONCLUSIONS: Prior to surgical resection, 13C MR spectroscopic imaging with hyperpolarized pyruvate reveals increased lactate production in regions of histologically confirmed glioblastoma.

SELECTION OF CITATIONS
SEARCH DETAIL
...