Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cardiovasc Res ; 120(5): 531-547, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38332738

ABSTRACT

AIMS: Heart failure due to ischaemic heart disease (IHD) is a leading cause of mortality worldwide. A major contributing factor to IHD-induced cardiac damage is hypoxia. Sequestosome 1 (p62) is a multi-functional adaptor protein with pleiotropic roles in autophagy, proteostasis, inflammation, and cancer. Despite abundant expression in cardiomyocytes, the role of p62 in cardiac physiology is not well understood. We hypothesized that cardiomyocyte-specific p62 deletion evokes hypoxia-induced cardiac pathology by impairing hypoxia-inducible factor 1α (Hif-1α) and nuclear factor erythroid 2-related factor 2 (Nrf2) signalling. METHODS AND RESULTS: Adult mice with germline deletion of cardiomyocyte p62 exhibited mild cardiac dysfunction under normoxic conditions. Transcriptomic analyses revealed a selective impairment in Nrf2 target genes in the hearts from these mice. Demonstrating the functional importance of this adaptor protein, adult mice with inducible depletion of cardiomyocyte p62 displayed hypoxia-induced contractile dysfunction, oxidative stress, and cell death. Mechanistically, p62-depleted hearts exhibit impaired Hif-1α and Nrf2 transcriptional activity. Because findings from these two murine models suggested a cardioprotective role for p62, mechanisms were evaluated using H9c2 cardiomyoblasts. Loss of p62 in H9c2 cells exposed to hypoxia reduced Hif-1α and Nrf2 protein levels. Further, the lack of p62 decreased Nrf2 protein expression, nuclear translocation, and transcriptional activity. Repressed Nrf2 activity associated with heightened Nrf2-Keap1 co-localization in p62-deficient cells, which was concurrent with increased Nrf2 ubiquitination facilitated by the E3 ligase Cullin 3, followed by proteasomal-mediated degradation. Substantiating our results, a gain of p62 in H9c2 cells stabilized Nrf2 and increased the transcriptional activity of Nrf2 downstream targets. CONCLUSION: Cardiac p62 mitigates hypoxia-induced cardiac dysfunction by stabilizing Hif-1α and Nrf2.


Subject(s)
Cell Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit , Myocytes, Cardiac , NF-E2-Related Factor 2 , Sequestosome-1 Protein , Animals , Cell Hypoxia/genetics , Cell Line , Disease Models, Animal , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NF-E2-Related Factor 2/deficiency , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Protein Stability , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Signal Transduction , Ubiquitination , Mice
2.
Circ Heart Fail ; 16(12): e010351, 2023 12.
Article in English | MEDLINE | ID: mdl-38113297

ABSTRACT

BACKGROUND: PRDM16 plays a role in myocardial development through TGF-ß (transforming growth factor-beta) signaling. Recent evidence suggests that loss of PRDM16 expression is associated with cardiomyopathy development in mice, although its role in human cardiomyopathy development is unclear. This study aims to determine the impact of PRDM16 loss-of-function variants on cardiomyopathy in humans. METHODS: Individuals with PRDM16 variants were identified and consented. Induced pluripotent stem cell-derived cardiomyocytes were generated from a proband hosting a Q187X nonsense variant as an in vitro model and underwent proliferative and transcriptional analyses. CRISPR (clustered regularly interspaced short palindromic repeats)-mediated knock-in mouse model hosting the Prdm16Q187X allele was generated and subjected to ECG, histological, and transcriptional analysis. RESULTS: We report 2 probands with loss-of-function PRDM16 variants and pediatric left ventricular noncompaction cardiomyopathy. One proband hosts a PRDM16-Q187X variant with left ventricular noncompaction cardiomyopathy and demonstrated infant-onset heart failure, which was selected for further study. Induced pluripotent stem cell-derived cardiomyocytes prepared from the PRDM16-Q187X proband demonstrated a statistically significant impairment in myocyte proliferation and increased apoptosis associated with transcriptional dysregulation of genes implicated in cardiac maturation, including TGF-ß-associated transcripts. Homozygous Prdm16Q187X/Q187X mice demonstrated an underdeveloped compact myocardium and were embryonically lethal. Heterozygous Prdm16Q187X/WT mice demonstrated significantly smaller ventricular dimensions, heightened fibrosis, and age-dependent loss of TGF-ß expression. Mechanistic studies were undertaken in H9c2 cardiomyoblasts to show that PRDM16 binds TGFB3 promoter and represses its transcription. CONCLUSIONS: Novel loss-of-function PRDM16 variant impairs myocardial development resulting in noncompaction cardiomyopathy in humans and mice associated with altered TGF-ß signaling.


Subject(s)
Cardiomyopathies , DNA-Binding Proteins , Heart Failure , Signal Transduction , Transforming Growth Factor beta , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Heart Failure/genetics , Cardiomyopathies/genetics , Cardiomyopathies/physiopathology , Myocardium/pathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/pathology , Humans , Male , Female , Animals , Mice , Gene Knock-In Techniques , Infant, Newborn , Child, Preschool , Cell Proliferation/genetics , Apoptosis/genetics , Transforming Growth Factor beta/metabolism , Signal Transduction/genetics , Cells, Cultured
3.
Circ Genom Precis Med ; 16(4): 390-400, 2023 08.
Article in English | MEDLINE | ID: mdl-37395136

ABSTRACT

BACKGROUND: 1p36 deletion syndrome can predispose to pediatric-onset cardiomyopathy. Deletion breakpoints are variable and may delete the transcription factor PRDM16. Early studies suggest that deletion of PRDM16 may underlie cardiomyopathy in patients with 1p36 deletion; however, the prognostic impact of PRDM16 loss is unknown. METHODS: This retrospective cohort included subjects with 1p36 deletion syndrome from 4 hospitals. Prevalence of cardiomyopathy and freedom from death, cardiac transplantation, or ventricular assist device were analyzed. A systematic review cohort was derived for further analysis. A cardiac-specific Prdm16 knockout mouse (Prdm16 conditional knockout) was generated. Echocardiography was performed at 4 and 6 to 7 months. Histology staining and qPCR were performed at 7 months to assess fibrosis. RESULTS: The retrospective cohort included 71 patients. Among individuals with PRDM16 deleted, 34.5% developed cardiomyopathy versus 7.7% of individuals with PRDM16 not deleted (P=0.1). In the combined retrospective and systematic review cohort (n=134), PRDM16 deletion-associated cardiomyopathy risk was recapitulated and significant (29.1% versus 10.8%, P=0.03). PRDM16 deletion was associated with increased risk of death, cardiac transplant, or ventricular assist device (P=0.04). Among those PRDM16 deleted, 34.5% of females developed cardiomyopathy versus 16.7% of their male counterparts (P=0.2). We find sex-specific differences in the incidence and the severity of contractile dysfunction and fibrosis in female Prdm16 conditional knockout mice. Further, female Prdm16 conditional knockout mice demonstrate significantly elevated risk of mortality (P=0.0003). CONCLUSIONS: PRDM16 deletion is associated with a significantly increased risk of cardiomyopathy and cardiac mortality. Prdm16 conditional knockout mice develop cardiomyopathy in a sex-biased way. Patients with PRDM16 deletion should be assessed for cardiac disease.


Subject(s)
Cardiomyopathies , DNA-Binding Proteins , Animals , Female , Humans , Male , Mice , Cardiomyopathies/genetics , DNA-Binding Proteins/genetics , Fibrosis , Mice, Knockout , Multicenter Studies as Topic , Retrospective Studies , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...