Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Insects ; 14(3)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36975948

ABSTRACT

Incursion and establishment of an exotic pest may threaten natural habitats and disrupt ecosystems. On the other hand, resident natural enemies may play an important role in invasive pest control. Bactericera cockerelli, commonly known as the tomato-potato psyllid, is an exotic pest, first detected on mainland Australia in Perth, Western Australia, in early 2017. B. cockerelli causes direct damage to crops by feeding and indirectly by acting as the vector of the pathogen that causes zebra chip disease in potatoes, although the latter is not present in mainland Australia. At present, Australian growers rely on the frequent use of insecticides to control B. cockerelli, which may lead to a series of negative economic and environmental consequences. The incursion of B. cockerelli also provides a unique opportunity to develop a conservation biological control strategy through strategically targeting existing natural enemy communities. In this review, we consider opportunities to develop biological control strategies for B. cockerelli to alleviate the dependence on synthetic insecticides. We highlight the potential of existing natural enemies to contribute toward regulating populations of B. cockerelli in the field and discuss the challenges ahead to strengthen the key role they can play through conservation biological control.

2.
Arch Insect Biochem Physiol ; 109(1): e21853, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34820894

ABSTRACT

Corn leaf aphid Rhopalosiphum maidis (Fitch) can feed on various cereal crops and transmit viruses that may cause serious economic losses. To test the impact of both host plant species and age on R. maidis, as well as the proteomic difference of diverse populations, we first investigated the survival and reproduction of six R. maidis populations (i.e., LF, HF, GZ, DY, BJ, and MS) via a direct observation method in the laboratory on 10 and 50 cm high maize seedlings, and 10 cm high barley seedlings. Then a proteomic approach was implemented to identify the differentially expressed proteins from both aphids and endosymbionts of BJ and MS populations. Results indicated that the BJ population performed significantly better than the others on both barley and 50 cm high maize seedlings, while no population could survive on 10 cm high maize seedlings. The proteomic results demonstrated that the expression levels of myosin heavy chain (muscle isoform X12) (spot 781) and peroxidase (spot 1383) were upregulated, while ATP-dependent protease Hsp 100 (spot 2137) from Hamiltonella defensa and protein SYMBAF (spot 2703) from Serratia symbiotica were downregulated in the BJ population when compared to expression levels of the MS population. We hypothesize that the fatalness observed on 10 cm high maize seedlings may be caused by secondary metabolites that are synthesized by the seedlings and the MS population of R. maidis should be more stress-resistant than the BJ population. Our results also provide insights for understanding the interaction between host plants and aphids.


Subject(s)
Aphids/metabolism , Proteome , Animals , Aphids/microbiology , Aphids/physiology , Enterobacteriaceae/metabolism , Hordeum/parasitology , Insect Proteins/metabolism , Plant Leaves/parasitology , Serratia/metabolism , Symbiosis , Zea mays/parasitology
3.
Front Plant Sci ; 13: 1090559, 2022.
Article in English | MEDLINE | ID: mdl-36714696

ABSTRACT

Herbivore induced plant volatiles (HIPVs) are key components of plant-herbivorous-natural enemies communications. Indeed, plants respond to herbivores feeding by releasing HIPVs to attract natural enemies. The present study analyses the effect of HIPVs of Vitex negundo (Lamiaceae), an indigenous plant species in northern China, on the predatory ladybug species Harmonia axyridis. Y-tube olfactometer bioassay showed that H. axyridis adults were significantly attracted by V. negundo infested by the aphid Aphis gossypii. We analyzed and compared volatile profiles between healthy and A. gossypii infested V. negundo, screened out the candidate active HIPVs mediated by A. gossypii which could attract H. axyridis, and tested the olfactory behavior of the candidate active compounds on H. axyridis. The gas chromatography-mass spectrometry analysis showed that five volatile compounds were significantly up-regulated after V. negundo infestation by A. gossypii, and five substances were significantly down-regulated in the terpenoid biosynthesis pathway. The olfactory behavior response showed that H. axyridis has significant preference for sclareol, eucalyptol, nonanal and α-terpineol, indicating that this chemical compounds are the important volatiles released by V. negundo to attract H. axyridis. This study preliminarily clarified that V. negundo release HIPVs to attract natural enemies when infected by herbivorous insects. The description of the volatile emission profile enriches the theoretical system of insect-induced volatile-mediated plant defense function of woody plants. Applications in crop protection would lie in designing original strategies to naturally control aphids in orchards.

4.
Insects ; 12(5)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33922999

ABSTRACT

While insect predators need high-quality food to reach sexual maturity and reproduce, starvation following adult eclosion may occur when prey are missing in agroecosystems. This study explores whether the type of diet available at eclosion determines the future fecundity of newly emerged adult predators. In a laboratory experiment, three different diets (i.e., flowers of Perilla frutescens (L.) Britton, eggs of Ephestia kuehniella Zeller as prey, or no food) were offered to adult females of the ladybird beetle Harmonia axyridis Pallas during their first three days after adult eclosion. On the fourth day, each female was paired with a prey-fed male and the pair was subsequently fed with prey. Diet at eclosion did not affect pre-oviposition time, the number of eggs oviposited daily, or the viability of egg batches. High variability in pre-oviposition time among females was observed for all diets. Significant negative linear relationships were found between pre-oviposition time and both the number of eggs oviposited daily and the viability of egg batches. This study clarifies that the food readily available at adult eclosion does not affect the capacity of H. axyridis to reproduce, provided that adults find prey within a few days. More generally, it shows that the reproductive traits of H. axyridis allow this generalist predator to be highly adapted to heterogenous environments in its native range. It is concluded that the variety of habitats offered by diversified agroecosystems may highly benefit the ladybird beetle H. axyridis, and potentially enhance its ability to biologically regulate crop pests.

5.
Insect Sci ; 27(6): 1346-1359, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31762189

ABSTRACT

Reflex bleeding is an important antipredator defense mechanism in Coccinellidae. We examined the costs of reflex bleeding in larval and adult stages of the ladybird beetle Harmonia axyridis on offspring fitness and reproductive performance through the comparisons between bled and control larvae, reciprocal crosses of bled/control beetles, and early and late clutch phenotypes. Beetles bled during their larval stage spent a longer time in development and weighed less than controls. Egg fertility was reduced for crosses where either one or both parents had been bled during the larval or adult stage. Offspring crosses that included a parent bled during the larval stage suffered fitness costs in development and female body mass, while those bled during the adult stage suffered no transgenerational costs. Males that suffered bleeding during their larval stage accelerated progeny development of nonbled females in early clutches, suggesting a positive transgenerational effect of larval bleeding, while males that did not suffer bleeding accelerated progeny development of bled females in later clutches. As the underlying effects of bleeding on females' offspring in the early clutches were diminished in the late ones, suggesting another transgenerational effect. The strengths of maternal and paternal effects on progeny development of parents bled at the larval stage were higher in earlier clutches. This study suggests that H. axyridis adults are less affected than larvae by the frequent use of the defensive secretions in their stressful habitats.


Subject(s)
Coleoptera/physiology , Genetic Fitness/physiology , Animals , Coleoptera/genetics , Coleoptera/growth & development , Female , Food Chain , Larva/genetics , Larva/growth & development , Larva/physiology , Male , Predatory Behavior , Reproduction
6.
Insects ; 9(3)2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30181444

ABSTRACT

The decline of pollinators in agricultural areas has been observed for some decades, this being partly due to landscape simplification in intensive agrosystems. Diversifying agricultural landscapes by sowing flower strips within fields could reduce these adverse effects on biodiversity. In this context, the study presented here aimed at assessing and comparing the abundance and diversity of bees (Hymenoptera: Anthophila) and hoverflies (Diptera: Syrphidae) found and visiting flowers in three types of flower strips in Belgium: (i) a mixture of 11 wild flowers, (ii) a monofloral strip of Dimorphoteca pluvialis (Asteraceae) and (iii) a monofloral strip of Camelina sativa (Brassicaceae), where the last two are considered to be intercrops since they are valuable on the market, all sown within a field of winter wheat (Triticum aestivum L.). Pollinators were captured with pan traps and by netting in standardised transects from May to July 2017. One-thousand one-hundred and eighty-four individuals belonging to 43 bee species and 18 hoverfly species were collected. Significant differences in hoverfly diversity were found between the different flower strips. The multifloral treatment supported a greater diversity of syrphid species. Various pollinator species visited the different flowers composing the mixture and also D. pluvialis. The pollinator community proved to be predominantly generalist, with the exception of an oligolectic species in Belgium, Andrena nitidiuscula. Moreover, the three tested flower strips were effective in attracting hoverflies, among them natural enemies of insect pests. This study opens new perspectives in the design of intercropping systems with flower strips towards the design of sustainable agro-ecosystems. Improving economic profitability of sowing flower strips could encourage farmers to diversify their agricultural systems and foster conservation biology strategies.

7.
Sci Total Environ ; 621: 600-611, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29195207

ABSTRACT

Spatial diversification of crop and non-crop habitats in farming systems is promising for enhancing natural regulation of insect pests. Nevertheless, results from recent syntheses show variable effects. One explanation is that the abundance and diversity of pests and natural enemies are affected by the composition, design and management of crop and non-crop habitats. Moreover, interactions between both local and landscape elements and practices carried out at different spatial scales may affect the regulation of insect pests. Hence, research is being conducted to understand these interdependencies. However, insects are not the only pests and pests are not the only elements to regulate in agroecosystems. Broadening the scope could allow addressing multiple issues simultaneously, but also solving them together by enhancing synergies. Indeed, spatial diversification of crop and non-crop habitats can allow addressing the issues of weeds and pathogens, along with being beneficial to several other regulating services like pollination, soil conservation and nutrient cycling. Although calls rise to develop multifunctional landscapes that optimize the delivery of multiple ecosystem services, it still represents a scientific challenge today. Enhancing interdisciplinarity in research institutions and building interrelations between scientists and stakeholders may help reach this goal. Despite obstacles, positive results from research based on such innovative approaches are encouraging for engaging science in this path. Hence, the aim of the present paper is to offer an update on these issues by exploring the most recent findings and discussing these results to highlight needs for future research.


Subject(s)
Agriculture , Ecosystem , Insect Control , Animals , Insecta , Plant Diseases/prevention & control , Plant Weeds , Pollination
8.
Insects ; 8(3)2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28902133

ABSTRACT

Landscape diversification is a key element for the development of sustainable agriculture. This study explores whether the implementation of habitats for pest natural enemies enhances conservation biological control in an adjacent field. In the present study conducted in Gembloux (Belgium) in 2016, the effect of two different habitats (wildflower strips and a forest) and aphid abundance on the density of aphid natural enemies, mummified aphids and parasitism on pea plants was assessed through visual observations. The effect of the habitats on aphids was also evaluated. The habitats but not aphid density significantly affected hoverfly larvae, which were more abundant adjacent to wildflower strips than to the forest. The contrary was observed for ladybeetle adults, which were positively related with aphids but not affected by the adjacent habitats. The abundance of mummies and the parasitism rate were significantly affected by both the habitats and aphid density. They were both significantly enhanced adjacent to wildflower strips compared to the forest, but the total parasitism rate was low (<1%), questioning whether parasitoids could significantly control aphids on the pea crop. As for the aphids, their abundance was not significantly affected by the adjacent habitats. These results are discussed with respect to the potential of these habitats to provide overwintering sites and food resources for natural enemies, and thereby enhance conservation biological control.

9.
Zootaxa ; 4092(4): 548-60, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-27394473

ABSTRACT

Aphid parasitoids have good potential for crop protection. However, they have been poorly studied in Belgium, especially in terms of species diversity. Therefore, the aim of this work was to establish the first checklist for the country. To complete the list, aphid parasitoids were sampled in wheat and pea fields near Gembloux (Belgium), in 2013 and 2014. Among the identified species, Aphelinus asychis Walker, Aphelinus daucicola Kurdjumov, Aphelinus fusciscapus (Förster), Aphidius asteris Haliday, Aphidius eadyi Starý, Gonzalez & Hall, Praon barbatum Mackauer, and Trioxys auctus (Haliday) were recorded for the first time in Belgium. Thirty-two Aphidiinae and seven Aphelinus species were included in the checklist. It is hoped this study will stimulate further research, as species diversity is still low compared with neighbouring countries.


Subject(s)
Hymenoptera/anatomy & histology , Hymenoptera/classification , Animal Distribution , Animals , Belgium , Hymenoptera/physiology , Species Specificity
10.
Pest Manag Sci ; 72(12): 2193-2202, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27271821

ABSTRACT

Wheat (Triticum aestivum L.) is one of the most cultivated crops in temperate climates. As its pests are mainly controlled with insecticides that are harmful to the environment and human health, alternative practices such as intercropping have been studied for their potential to promote biological control. Based on the published literature, this study aimed to review the effect of wheat-based intercropping systems on insect pests and their natural enemies. Fifty original research papers were obtained from a systematic search of the peer-reviewed literature. Results from a vote-counting analysis indicated that, in the majority of studies, pest abundance was significantly reduced in intercropping systems compared with pure stands. However, the occurrence of their natural enemies as well as predation and parasitism rates were not significantly increased. The country where the studies took place, the type of intercropping and the crop that was studied in the association had significant effects on these results. These findings show that intercropping is a viable practice to reduce insecticide use in wheat production systems. Nevertheless, other practices could be combined with intercropping to favour natural enemies and enhance pest control. © 2016 Society of Chemical Industry.


Subject(s)
Agriculture/methods , Pest Control, Biological/methods , Triticum , Animals , Brassica napus , Crops, Agricultural , Gossypium , Insecta , Pisum sativum , Predatory Behavior , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...