Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 35(8): 109180, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34038727

ABSTRACT

Mitochondrial respiratory complex subunits assemble in supercomplexes. Studies of supercomplexes have typically relied upon antibody-based quantification, often limited to a single subunit per respiratory complex. To provide a deeper insight into mitochondrial and supercomplex plasticity, we combine native electrophoresis and mass spectrometry to determine the supercomplexome of skeletal muscle from sedentary and exercise-trained mice. We quantify 422 mitochondrial proteins within 10 supercomplex bands in which we show the debated presence of complexes II and V. Exercise-induced mitochondrial biogenesis results in non-stoichiometric changes in subunits and incorporation into supercomplexes. We uncover the dynamics of supercomplex-related assembly proteins and mtDNA-encoded subunits after exercise. Furthermore, exercise affects the complexing of Lactb, an obesity-associated mitochondrial protein, and ubiquinone biosynthesis proteins. Knockdown of ubiquinone biosynthesis proteins leads to alterations in mitochondrial respiration. Our approach can be applied to broad biological systems. In this instance, comprehensively analyzing respiratory supercomplexes illuminates previously undetectable complexity in mitochondrial plasticity.


Subject(s)
Mass Spectrometry/methods , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Proteomics/methods , Animals , Female , Humans , Mice , Oxidative Phosphorylation
2.
Mol Metab ; 24: 30-43, 2019 06.
Article in English | MEDLINE | ID: mdl-31079959

ABSTRACT

OBJECTIVE: Increasing the amounts of functionally competent brown adipose tissue (BAT) in adult humans has the potential to restore dysfunctional metabolism and counteract obesity. In this study, we aimed to characterize the human perirenal fat depot, and we hypothesized that there would be regional, within-depot differences in the adipose signature depending on local sympathetic activity. METHODS: We characterized fat specimens from four different perirenal regions of adult kidney donors, through a combination of qPCR mapping, immunohistochemical staining, RNA-sequencing, and pre-adipocyte isolation. Candidate gene signatures, separated by adipocyte morphology, were recapitulated in a murine model of unilocular brown fat induced by thermoneutrality and high fat diet. RESULTS: We identified widespread amounts of dormant brown adipose tissue throughout the perirenal depot, which was contrasted by multilocular BAT, primarily found near the adrenal gland. Dormant BAT was characterized by a unilocular morphology and a distinct gene expression profile, which partly overlapped with that of subcutaneous white adipose tissue (WAT). Brown fat precursor cells, which differentiated into functional brown adipocytes were present in the entire perirenal fat depot, regardless of state. We identified SPARC as a candidate adipokine contributing to a dormant BAT state, and CLSTN3 as a novel marker for multilocular BAT. CONCLUSIONS: We propose that perirenal adipose tissue in adult humans consists mainly of dormant BAT and provide a data set for future research on factors which can reactivate dormant BAT into active BAT, a potential strategy for combatting obesity and metabolic disease.


Subject(s)
Adipocytes, Brown/cytology , Adipose Tissue, Brown/cytology , Kidney/cytology , Mesenchymal Stem Cells/cytology , Adipocytes, Brown/metabolism , Adult , Aged , Animals , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cells, Cultured , Female , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Middle Aged , Osteonectin/genetics , Osteonectin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...