Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Br J Pharmacol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830749

ABSTRACT

Cardiac remodelling involves structural, cellular and molecular alterations in the heart after injury, resulting in progressive loss of heart function and ultimately leading to heart failure. Circular RNAs (circRNAs) are a recently rediscovered class of non-coding RNAs that play regulatory roles in the pathogenesis of cardiovascular diseases, including heart failure. Thus, a more comprehensive understanding of the role of circRNAs in the processes governing cardiac remodelling may set the ground for the development of circRNA-based diagnostic and therapeutic strategies. In this review, the current knowledge about circRNA origin, conservation, characteristics and function is summarized. Bioinformatics and wet-lab methods used in circRNA research are discussed. The regulatory function of circRNAs in cardiac remodelling mechanisms such as cell death, cardiomyocyte hypertrophy, inflammation, fibrosis and metabolism is highlighted. Finally, key challenges and opportunities in circRNA research are discussed, and orientations for future work to address the pharmacological potential of circRNAs in heart failure are proposed.

3.
Article in English | MEDLINE | ID: mdl-38364948

ABSTRACT

PURPOSE: Studies during the past 9 years suggest that delivering radiation at dose rates exceeding 40 Gy/s, known as "FLASH" radiation therapy, enhances the therapeutic index of radiation therapy (RT) by decreasing normal tissue damage while maintaining tumor response compared with conventional (or standard) RT. This study demonstrates the cardioprotective benefits of FLASH proton RT (F-PRT) compared with standard (conventional) proton RT (S-PRT), as evidenced by reduced acute and chronic cardiac toxicities. METHODS AND MATERIALS: Mice were imaged using cone beam computed tomography to precisely determine the heart's apex as the beam isocenter. Irradiation was conducted using a shoot-through technique with a 5-mm diameter circular collimator. Bulk RNA-sequencing was performed on nonirradiated samples, as well as apexes treated with F-PRT or S-PRT, at 2 weeks after a single 40 Gy dose. Inflammatory responses were assessed through multiplex cytokine/chemokine microbead assay and immunofluorescence analyses. Levels of perivascular fibrosis were quantified using Masson's Trichrome and Picrosirius red staining. Additionally, cardiac tissue functionality was evaluated by 2-dimensional echocardiograms at 8- and 30-weeks post-PRT. RESULTS: Radiation damage was specifically localized to the heart's apex. RNA profiling of cardiac tissues treated with PRT revealed that S-PRT uniquely upregulated pathways associated with DNA damage response, induction of tumor necrosis factor superfamily, and inflammatory response, and F-PRT primarily affected cytoplasmic translation, mitochondrion organization, and adenosine triphosphate synthesis. Notably, F-PRT led to a milder inflammatory response, accompanied by significantly attenuated changes in transforming growth factor ß1 and α smooth muscle actin levels. Critically, F-PRT decreased collagen deposition and better preserved cardiac functionality compared with S-PRT. CONCLUSIONS: This study demonstrated that F-PRT reduces the induction of an inflammatory environment with lower expression of inflammatory cytokines and profibrotic factors. Importantly, the results indicate that F-PRT better preserves cardiac functionality, as confirmed by echocardiography analysis, while also mitigating the development of long-term fibrosis.

4.
mBio ; 15(3): e0301023, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38319109

ABSTRACT

In the last decade, the immense growth in the field of bacterial small RNAs (sRNAs), along with the biotechnological breakthroughs in Deep Sequencing permitted the deeper understanding of sRNA-RNA interactions. However, microbiology is currently lacking a thoroughly curated collection of this rapidly expanding universe. We present Agnodice (https://dianalab.e-ce.uth.gr/agnodice), our effort to systematically catalog and annotate experimentally supported bacterial sRNA-RNA interactions. Agnodice, for the first time, incorporates thousands of bacterial sRNA-RNA interactions derived from a diverse set of experimental methodologies including state-of-the-art Deep Sequencing interactome identification techniques. It comprises 39,600 entries which are annotated at strain-level resolution and pertain to 399 sRNAs and 12,137 target RNAs identified in 71 bacterial strains. The database content is exclusively experimentally supported, incorporating interactions derived via low yield as well as state-of-the-art high-throughput methods. The entire content of the database is freely accessible and can be directly downloaded for further analysis. Agnodice will serve as a valuable source, enabling microbiologists to form novel hypotheses, design/identify novel sRNA-based drug targets, and explore the therapeutic potential of microbiomes from the perspective of small regulatory RNAs.IMPORTANCEAgnodice (https://dianalab.e-ce.uth.gr/agnodice) is an effort to systematically catalog and annotate experimentally supported bacterial small RNA (sRNA)-RNA interactions. Agnodice, for the first time, incorporates thousands of bacterial sRNA-RNA interactions derived from a diverse set of experimental methodologies including state-of-the-art Next Generation Sequencing interactome identification techniques.


Subject(s)
RNA, Bacterial , RNA, Small Untranslated , RNA, Bacterial/genetics , RNA, Small Untranslated/genetics , Bacteria/genetics , Gene Expression Regulation, Bacterial
5.
Nucleic Acids Res ; 52(D1): D304-D310, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37986224

ABSTRACT

TarBase is a reference database dedicated to produce, curate and deliver high quality experimentally-supported microRNA (miRNA) targets on protein-coding transcripts. In its latest version (v9.0, https://dianalab.e-ce.uth.gr/tarbasev9), it pushes the envelope by introducing virally-encoded miRNAs, interactions leading to target-directed miRNA degradation (TDMD) events and the largest collection of miRNA-gene interactions to date in a plethora of experimental settings, tissues and cell-types. It catalogues ∼6 million entries, comprising ∼2 million unique miRNA-gene pairs, supported by 37 experimental (high- and low-yield) protocols in 172 tissues and cell-types. Interactions are annotated with rich metadata including information on genes/transcripts, miRNAs, samples, experimental contexts and publications, while millions of miRNA-binding locations are also provided at cell-type resolution. A completely re-designed interface with state-of-the-art web technologies, incorporates more features, and allows flexible and ingenious use. The new interface provides the capability to design sophisticated queries with numerous filtering criteria including cell lines, experimental conditions, cell types, experimental methods, species and/or tissues of interest. Additionally, a plethora of fine-tuning capacities have been integrated to the platform, offering the refinement of the returned interactions based on miRNA confidence and expression levels, while boundless local retrieval of the offered interactions and metadata is enabled.


Subject(s)
Databases, Nucleic Acid , MicroRNAs , Genes, Viral/genetics , Internet , MicroRNAs/genetics , MicroRNAs/metabolism , Animals
6.
Nature ; 622(7981): 41-47, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37794265

ABSTRACT

Scientists have been trying to identify every gene in the human genome since the initial draft was published in 2001. In the years since, much progress has been made in identifying protein-coding genes, currently estimated to number fewer than 20,000, with an ever-expanding number of distinct protein-coding isoforms. Here we review the status of the human gene catalogue and the efforts to complete it in recent years. Beside the ongoing annotation of protein-coding genes, their isoforms and pseudogenes, the invention of high-throughput RNA sequencing and other technological breakthroughs have led to a rapid growth in the number of reported non-coding RNA genes. For most of these non-coding RNAs, the functional relevance is currently unclear; we look at recent advances that offer paths forward to identifying their functions and towards eventually completing the human gene catalogue. Finally, we examine the need for a universal annotation standard that includes all medically significant genes and maintains their relationships with different reference genomes for the use of the human gene catalogue in clinical settings.


Subject(s)
Genes , Genome, Human , Molecular Sequence Annotation , Protein Isoforms , Humans , Genome, Human/genetics , Molecular Sequence Annotation/standards , Molecular Sequence Annotation/trends , Protein Isoforms/genetics , Human Genome Project , Pseudogenes , RNA/genetics
7.
Cancer Res ; 83(21): 3562-3576, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37578274

ABSTRACT

Parkin is an E3 ubiquitin ligase, which plays a key role in the development of Parkinson disease. Parkin defects also occur in numerous cancers, and a growing body of evidence indicates that Parkin functions as a tumor suppressor that impedes a number of cellular processes involved in tumorigenesis. Here, we generated murine and human models that closely mimic the advanced-stage tumors where Parkin deficiencies are found to provide deeper insights into the tumor suppressive functions of Parkin. Loss of Parkin expression led to aggressive tumor growth, which was associated with poor tumor antigen presentation and limited antitumor CD8+ T-cell infiltration and activation. The effect of Parkin deficiency on tumor growth was lost following depletion of CD8+ T cells. In line with previous findings, Parkin deficiency was linked with mitochondria-associated metabolic stress, PTEN degradation, and enhanced Akt activation. Increased Akt signaling led to dysregulation of antigen presentation, and treatment with the Akt inhibitor MK2206-2HCl restored antigen presentation in Parkin-deficient tumors. Analysis of data from patients with clear cell renal cell carcinoma indicated that Parkin expression was downregulated in tumors and that low expression correlated with reduced overall survival. Furthermore, low Parkin expression correlated with reduced patient response to immunotherapy. Overall, these results identify a role for Parkin deficiency in promoting tumor immune evasion that may explain the poor prognosis associated with loss of Parkin across multiple types of cancer. SIGNIFICANCE: Parkin prevents immune evasion by regulating tumor antigen processing and presentation through the PTEN/Akt network, which has important implications for immunotherapy treatments in patients with Parkin-deficient tumors.


Subject(s)
Antigen Presentation , Neoplasms , Animals , Humans , Mice , Immunotherapy , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Proto-Oncogene Proteins c-akt , Tumor Escape , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
8.
Nucleic Acids Res ; 51(W1): W154-W159, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37260078

ABSTRACT

DIANA-miRPath is an online miRNA analysis platform harnessing predicted or experimentally supported miRNA interactions towards the exploration of combined miRNA effects. In its latest version (v4.0, http://www.microrna.gr/miRPathv4), DIANA-miRPath breaks new ground by introducing the capacity to tailor its target-based miRNA functional analysis engine to specific biological and/or experimental contexts. Via a redesigned modular interface with rich interaction, annotation and parameterization options, users can now perform enrichment analysis on Gene Ontology (GO) terms, KEGG and REACTOME pathways, sets from Molecular Signatures Database (MSigDB) and PFAM. Included miRNA interaction sets are derived from state-of-the-art resources of experimentally supported (DIANA-TarBase v8.0, miRTarBase and microCLIP cell-type-specific interactions) or from in silico miRNA-target interactions (updated DIANA-microT-CDS and TargetScan predictions). Bulk and single-cell expression datasets from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression project (GTEx) and adult/fetal single-cell atlases are integrated and can be used to assess the expression of enriched term components across a wide range of states. A discrete module enabling enrichment analyses using CRISPR knock-out screen datasets enables the detection of selected miRNAs with potentially crucial roles within conditions under study. Notably, the option to upload custom interaction, term, expression and screen sets further expands the versatility of miRPath webserver.


Subject(s)
MicroRNAs , Software , Cell Communication , Databases, Chemical , MicroRNAs/genetics , MicroRNAs/metabolism
9.
Annu Rev Biomed Data Sci ; 6: 275-298, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37159873

ABSTRACT

MicroRNAs (miRNAs) are short noncoding RNAs that can regulate all steps of gene expression (induction, transcription, and translation). Several virus families, primarily double-stranded DNA viruses, encode small RNAs (sRNAs), including miRNAs. These virus-derived miRNAs (v-miRNAs) help the virus evade the host's innate and adaptive immune system and maintain an environment of chronic latent infection. In this review, the functions of the sRNA-mediated virus-host interactions are highlighted, delineating their implication in chronic stress, inflammation, immunopathology, and disease. We provide insights into the latest viral RNA-based research-in silico approaches for functional characterization of v-miRNAs and other RNA types. The latest research can assist toward the identification of therapeutic targets to combat viral infections.


Subject(s)
MicroRNAs , Virus Diseases , Viruses , Humans , MicroRNAs/genetics , Viruses/genetics , RNA, Viral/genetics , Virus Diseases/genetics
10.
Nucleic Acids Res ; 51(W1): W148-W153, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37094027

ABSTRACT

DIANA-microT-CDS is a state-of-the-art miRNA target prediction algorithm catering the scientific community since 2009. It is one of the first algorithms to predict miRNA binding sites in both the 3' Untranslated Region (3'-UTR) and the coding sequence (CDS) of transcripts, with increased performance. Its current version, DIANA-microT 2023 (www.microrna.gr/microt_webserver/), brings forward a significantly updated set of interactions. DIANA-microT-CDS has been executed utilizing annotation information from Ensembl v102, miRBase 22.1 and, for the first time, MirGeneDB 2.1, yielding more than 83 million interactions in human, mouse, rat, chicken, fly and worm species. Additionally, this version delivers predicted interactions of miRNAs encoded from 20 viruses against host transcripts from human, mouse and chicken species. Numerous resources have been interconnected into DIANA-microT, including DIANA-TarBase, plasmiR, HMDD, UCSC, dbSNP, ClinVar, as well as miRNA/gene abundance values for 369 distinct cell-lines/tissues. The server interface has been redesigned allowing users to use smart filtering options, identify abundance patterns of interest, pinpoint known SNPs residing on binding sites and obtain miRNA-disease information. The contents of DIANA-microT webserver are freely accessible and can also be locally downloaded without any login requirements.


Subject(s)
MicroRNAs , Humans , Mice , Rats , Animals , MicroRNAs/metabolism , Software , Algorithms , Binding Sites , Polymorphism, Single Nucleotide , 3' Untranslated Regions/genetics
11.
ArXiv ; 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36994150

ABSTRACT

Scientists have been trying to identify all of the genes in the human genome since the initial draft of the genome was published in 2001. Over the intervening years, much progress has been made in identifying protein-coding genes, and the estimated number has shrunk to fewer than 20,000, although the number of distinct protein-coding isoforms has expanded dramatically. The invention of high-throughput RNA sequencing and other technological breakthroughs have led to an explosion in the number of reported non-coding RNA genes, although most of them do not yet have any known function. A combination of recent advances offers a path forward to identifying these functions and towards eventually completing the human gene catalogue. However, much work remains to be done before we have a universal annotation standard that includes all medically significant genes, maintains their relationships with different reference genomes, and describes clinically relevant genetic variants.

12.
Commun Med (Lond) ; 3(1): 46, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36997615

ABSTRACT

BACKGROUND: Early changes in breast intratumor heterogeneity during neoadjuvant chemotherapy may reflect the tumor's ability to adapt and evade treatment. We investigated the combination of precision medicine predictors of genomic and MRI data towards improved prediction of recurrence free survival (RFS). METHODS: A total of 100 women from the ACRIN 6657/I-SPY 1 trial were retrospectively analyzed. We estimated MammaPrint, PAM50 ROR-S, and p53 mutation scores from publicly available gene expression data and generated four, voxel-wise 3-D radiomic kinetic maps from DCE-MR images at both pre- and early-treatment time points. Within the primary lesion from each kinetic map, features of change in radiomic heterogeneity were summarized into 6 principal components. RESULTS: We identify two imaging phenotypes of change in intratumor heterogeneity (p < 0.01) demonstrating significant Kaplan-Meier curve separation (p < 0.001). Adding phenotypes to established prognostic factors, functional tumor volume (FTV), MammaPrint, PAM50, and p53 scores in a Cox regression model improves the concordance statistic for predicting RFS from 0.73 to 0.79 (p = 0.002). CONCLUSIONS: These results demonstrate an important step in combining personalized molecular signatures and longitudinal imaging data towards improved prognosis.


Early changes in tumor properties during treatment may tell us whether or not a patient's tumor is responding to treatment. Such changes may be seen on imaging. Here, changes in breast cancer properties are identified on imaging and are used in combination with gene markers to investigate whether response to treatment can be predicted using mathematical models. We demonstrate that tumor properties seen on imaging early on in treatment can help to predict patient outcomes. Our approach may allow clinicians to better inform patients about their prognosis and choose appropriate and effective therapies.

13.
Stem Cell Reports ; 18(4): 915-935, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36963393

ABSTRACT

The microRNA (miRNA) miR-124 has been employed supplementary to neurogenic transcription factors (TFs) and other miRNAs to enhance direct neurogenic conversion. The aim of this study was to investigate whether miR-124 is sufficient to drive direct reprogramming of astrocytes to induced neurons (iNs) on its own and elucidate its independent mechanism of reprogramming action. Our data show that miR-124 is a potent driver of the reprogramming switch of astrocytes toward an immature neuronal fate by directly targeting the RNA-binding protein Zfp36L1 implicated in ARE-mediated mRNA decay and subsequently derepressing Zfp36L1 neurogenic interactome. To this end, miR-124 contribution in iNs' production largely recapitulates endogenous neurogenesis pathways, being further enhanced upon addition of the neurogenic compound ISX9, which greatly improves iNs' differentiation and functional maturation. Importantly, miR-124 is potent in guiding direct conversion of reactive astrocytes to immature iNs in vivo following cortical trauma, while ISX9 supplementation confers a survival advantage to newly produced iNs.


Subject(s)
MicroRNAs , Neural Stem Cells , Astrocytes/metabolism , Neurons/metabolism , Cell Differentiation/genetics , Neural Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
14.
BMC Bioinformatics ; 23(Suppl 2): 395, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510136

ABSTRACT

BACKGROUND: The widespread usage of Cap Analysis of Gene Expression (CAGE) has led to numerous breakthroughs in understanding the transcription mechanisms. Recent evidence in the literature, however, suggests that CAGE suffers from transcriptional and technical noise. Regardless of the sample quality, there is a significant number of CAGE peaks that are not associated with transcription initiation events. This type of signal is typically attributed to technical noise and more frequently to random five-prime capping or transcription bioproducts. Thus, the need for computational methods emerges, that can accurately increase the signal-to-noise ratio in CAGE data, resulting in error-free transcription start site (TSS) annotation and quantification of regulatory region usage. In this study, we present DeepTSS, a novel computational method for processing CAGE samples, that combines genomic signal processing (GSP), structural DNA features, evolutionary conservation evidence and raw DNA sequence with Deep Learning (DL) to provide single-nucleotide TSS predictions with unprecedented levels of performance. RESULTS: To evaluate DeepTSS, we utilized experimental data, protein-coding gene annotations and computationally-derived genome segmentations by chromatin states. DeepTSS was found to outperform existing algorithms on all benchmarks, achieving 98% precision and 96% sensitivity (accuracy 95.4%) on the protein-coding gene strategy, with 96.66% of its positive predictions overlapping active chromatin, 98.27% and 92.04% co-localized with at least one transcription factor and H3K4me3 peak. CONCLUSIONS: CAGE is a key protocol in deciphering the language of transcription, however, as every experimental protocol, it suffers from biological and technical noise that can severely affect downstream analyses. DeepTSS is a novel DL-based method for effectively removing noisy CAGE signal. In contrast to existing software, DeepTSS does not require feature selection since the embedded convolutional layers can readily identify patterns and only utilize the important ones for the classification task. This study highlights the key role that DL can play in Molecular Biology, by removing the inherent flaws of experimental protocols, that form the backbone of contemporary research. Here, we show how DeepTSS can unleash the full potential of an already popular and mature method such as CAGE, and push the boundaries of coding and non-coding gene expression regulator research even further.


Subject(s)
Neural Networks, Computer , Software , Transcription Initiation Site , Promoter Regions, Genetic , Chromatin
15.
Sci Rep ; 12(1): 20048, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36414650

ABSTRACT

Coronavirus disease-2019 (COVID-19) can be asymptomatic or lead to a wide symptom spectrum, including multi-organ damage and death. Here, we explored the potential of microRNAs in delineating patient condition and predicting clinical outcome. Plasma microRNA profiling of hospitalized COVID-19 patients showed that miR-144-3p was dynamically regulated in response to COVID-19. Thus, we further investigated the biomarker potential of miR-144-3p measured at admission in 179 COVID-19 patients and 29 healthy controls recruited in three centers. In hospitalized patients, circulating miR-144-3p levels discriminated between non-critical and critical illness (AUCmiR-144-3p = 0.71; p = 0.0006), acting also as mortality predictor (AUCmiR-144-3p = 0.67; p = 0.004). In non-hospitalized patients, plasma miR-144-3p levels discriminated mild from moderate disease (AUCmiR-144-3p = 0.67; p = 0.03). Uncontrolled release of pro-inflammatory cytokines can lead to clinical deterioration. Thus, we explored the added value of a miR-144/cytokine combined analysis in the assessment of hospitalized COVID-19 patients. A miR-144-3p/Epidermal Growth Factor (EGF) combined score discriminated between non-critical and critical hospitalized patients (AUCmiR-144-3p/EGF = 0.81; p < 0.0001); moreover, a miR-144-3p/Interleukin-10 (IL-10) score discriminated survivors from nonsurvivors (AUCmiR-144-3p/IL-10 = 0.83; p < 0.0001). In conclusion, circulating miR-144-3p, possibly in combination with IL-10 or EGF, emerges as a noninvasive tool for early risk-based stratification and mortality prediction in COVID-19.


Subject(s)
COVID-19 , MicroRNAs , Humans , Biomarkers/blood , COVID-19/diagnosis , COVID-19/mortality , Epidermal Growth Factor , Interleukin-10 , MicroRNAs/blood
16.
Microorganisms ; 10(7)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35888991

ABSTRACT

Leishmania parasites are capable of effectively invading dendritic cells (DCs), a cell population orchestrating immune responses against several diseases, including leishmaniasis, by bridging innate and adaptive immunity. Leishmania on the other hand has evolved various mechanisms to subvert DCs activation and establish infection. Thus, the transcriptional profile of DCs derived from bone marrow (BMDCs) that have been infected with Leishmania infantum parasite or of DCs exposed to chemically inactivated parasites was investigated via RNA sequencing, aiming to better understand the host-pathogen interplay. Flow cytometry analysis revealed that L. infantum actively inhibits maturation of not only infected but also bystander BMDCs. Analysis of double-sorted L. infantum infected BMDCs revealed significantly increased expression of genes mainly associated with metabolism and particularly glycolysis. Moreover, differentially expressed genes (DEGs) related to DC-T cell interactions were also found to be upregulated exclusively in infected BMDCs. On the contrary, transcriptome analysis of fixed parasites containing BMDCs indicated that energy production was mediated through TCA cycle and oxidative phosphorylation. In addition, DEGs related to differentiation of DCs leading to activation and differentiation of Th17 subpopulations were detected. These findings suggest an important role of metabolism on DCs-Leishmania interplay and eventually disease establishment.

17.
Nat Cell Biol ; 24(6): 940-953, 2022 06.
Article in English | MEDLINE | ID: mdl-35654839

ABSTRACT

Bidirectional signalling between the tumour and stroma shapes tumour aggressiveness and metastasis. ATF4 is a major effector of the Integrated Stress Response, a homeostatic mechanism that couples cell growth and survival to bioenergetic demands. Using conditional knockout ATF4 mice, we show that global, or fibroblast-specific loss of host ATF4, results in deficient vascularization and a pronounced growth delay of syngeneic melanoma and pancreatic tumours. Single-cell transcriptomics of tumours grown in Atf4Δ/Δ mice uncovered a reduction in activation markers in perivascular cancer-associated fibroblasts (CAFs). Atf4Δ/Δ fibroblasts displayed significant defects in collagen biosynthesis and deposition and a reduced ability to support angiogenesis. Mechanistically, ATF4 regulates the expression of the Col1a1 gene and levels of glycine and proline, the major amino acids of collagen. Analyses of human melanoma and pancreatic tumours revealed a strong correlation between ATF4 and collagen levels. Our findings establish stromal ATF4 as a key driver of CAF functionality, malignant progression and metastasis.


Subject(s)
Cancer-Associated Fibroblasts , Melanoma , Pancreatic Neoplasms , Animals , Cancer-Associated Fibroblasts/metabolism , Collagen/metabolism , Fibroblasts/metabolism , Gene Expression Regulation, Neoplastic , Melanoma/genetics , Mice , Mice, Knockout , Neovascularization, Pathologic/metabolism , Pancreatic Neoplasms/pathology
19.
Genome Biol ; 23(1): 39, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35101114

ABSTRACT

We introduce AGAMEMNON ( https://github.com/ivlachos/agamemnon ) for the acquisition of microbial abundances from shotgun metagenomics and metatranscriptomic samples, single-microbe sequencing experiments, or sequenced host samples. AGAMEMNON delivers accurate abundances at genus, species, and strain resolution. It incorporates a time and space-efficient indexing scheme for fast pattern matching, enabling indexing and analysis of vast datasets with widely available computational resources. Host-specific modules provide exceptional accuracy for microbial abundance quantification from tissue RNA/DNA sequencing, enabling the expansion of experiments lacking metagenomic/metatranscriptomic analyses. AGAMEMNON provides an R-Shiny application, permitting performance of investigations and visualizations from a graphics interface.


Subject(s)
Metagenome , Metagenomics , Sequence Analysis, DNA , Sequence Analysis, RNA
20.
Nucleic Acids Res ; 50(D1): D1055-D1061, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34469540

ABSTRACT

microRNAs (miRNAs) are short (∼23nt) single-stranded non-coding RNAs that act as potent post-transcriptional gene expression regulators. Information about miRNA expression and distribution across cell types and tissues is crucial to the understanding of their function and for their translational use as biomarkers or therapeutic targets. DIANA-miTED is the most comprehensive and systematic collection of miRNA expression values derived from the analysis of 15 183 raw human small RNA-Seq (sRNA-Seq) datasets from the Sequence Read Archive (SRA) and The Cancer Genome Atlas (TCGA). Metadata quality maximizes the utility of expression atlases, therefore we manually curated SRA and TCGA-derived information to deliver a comprehensive and standardized set, incorporating in total 199 tissues, 82 anatomical sublocations, 267 cell lines and 261 diseases. miTED offers rich instant visualizations of the expression and sample distributions of requested data across variables, as well as study-wide diagrams and graphs enabling efficient content exploration. Queries also generate links towards state-of-the-art miRNA functional resources, deeming miTED an ideal starting point for expression retrieval, exploration, comparison, and downstream analysis, without requiring bioinformatics support or expertise. DIANA-miTED is freely available at http://www.microrna.gr/mited.


Subject(s)
Databases, Genetic , Databases, Nucleic Acid , MicroRNAs/genetics , Software , Binding Sites/genetics , Gene Expression Regulation/genetics , Genome/genetics , Humans , MicroRNAs/classification , Tissue Distribution/genetics , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...