Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734900

ABSTRACT

Human T cell leukemia/T-lymphotropic virus type 1 (HTLV-1) infection occurs by cell-to-cell transmission and can induce fatal adult T cell leukemia. Vaccine development is critical for the control of HTLV-1 transmission. However, determining whether vaccine-induced anti-Env antibodies can prevent cell-to-cell HTLV-1 transmission is challenging. Here, we examined the protective efficacy of a vaccine inducing anti-Env antibodies against HTLV-1 challenge in cynomolgus macaques. Eight of 10 vaccinated macaques produced anti-HTLV-1 neutralizing antibodies (NAbs) and were protected from an intravenous challenge with 108 HTLV-1-producing cells. In contrast, the 2 vaccinated macaques without NAb induction and 10 unvaccinated controls showed HTLV-1 infection with detectable proviral load after challenge. Five of the eight protected macaques were administered with an anti-CD8 monoclonal antibody, but proviruses remained undetectable and no increase in anti-HTLV-1 antibodies was observed even after CD8+ cell depletion in three of them. Analysis of Env-specific T cell responses did not suggest involvement of vaccine-induced Env-specific T cell responses in the protection. These results indicate that anti-Env antibody induction by vaccination can result in functionally sterile HTLV-1 protection, implying the rationale for strategies aimed at anti-Env antibody induction in prophylactic HTLV-1 vaccine development.

2.
J Virol ; 98(5): e0023924, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38647327

ABSTRACT

Dengue virus (DENV) represents a significant global health burden, with 50% of the world's population at risk of infection, and there is an urgent need for next-generation vaccines. Virus-like particle (VLP)-based vaccines, which mimic the antigenic structure of the virus but lack the viral genome, are an attractive approach. Here, we describe a dengue VLP (DENVLP) vaccine which generates a neutralizing antibody response against all four DENV serotypes in 100% of immunized non-human primates for up to 1 year. Additionally, DENVLP vaccination produced no ADE response against any of four DENV serotypes in vitro. DENVLP vaccination reduces viral replication in a non-human primate challenge model. We also show that transfer of purified IgG from immunized monkeys into immunodeficient mice protects against subsequent lethal DENV challenge, indicating a humoral mechanism of protection. These results indicate that this DENVLP vaccine is immunogenic and can be considered for clinical evaluation. Immunization of non-human primates with a tetravalent DENVLP vaccine induces high levels of neutralizing antibodies and reduces the severity of infection for all four dengue serotypes.IMPORTANCEDengue is a viral disease that infects nearly 400 million people worldwide and causes dengue hemorrhagic fever, which is responsible for 10,000 deaths each year. Currently, there is no therapeutic drug licensed to treat dengue infection, which makes the development of an effective vaccine essential. Virus-like particles (VLPs) are a safe and highly immunogenic platform that can be used in young children, immunocompromised individuals, as well as healthy adults. In this study, we describe the development of a dengue VLP vaccine and demonstrate that it induces a robust immune response against the dengue virus for over 1 year in monkeys. The immunity induced by this vaccine reduced live dengue infection in both murine and non-human primate models. These results indicate that our dengue VLP vaccine is a promising vaccine candidate.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Dengue Vaccines , Dengue Virus , Dengue , Vaccines, Virus-Like Particle , Virus Replication , Animals , Antibodies, Neutralizing/immunology , Dengue Virus/immunology , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Dengue/prevention & control , Dengue/immunology , Dengue/virology , Antibodies, Viral/immunology , Mice , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Humans , Vaccination , Serogroup , Immunoglobulin G/immunology , Disease Models, Animal , Macaca fascicularis , Female , Macaca mulatta
3.
Microbiol Spectr ; 11(4): e0151823, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37367230

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) induces chronic asymptomatic latent infection with a substantial proviral load but without significant viral replication in vivo. Cumulative studies have indicated involvement of CD8-positive (CD8+) cells, including virus-specific CD8+ T cells in the control of HTLV-1 replication. However, whether HTLV-1 expression from latently infected cells in vivo occurs in the absence of CD8+ cells remains unclear. Here, we examined the impact of CD8+ cell depletion by monoclonal anti-CD8 antibody administration on proviral load in HTLV-1-infected cynomolgus macaques. Five cynomolgus macaques were infected with HTLV-1 by inoculation with HTLV-1-producing cells. Administration of monoclonal anti-CD8 antibody in the chronic phase resulted in complete depletion of peripheral CD8+ T cells for approximately 2 months. All five macaques showed an increase in proviral load following CD8+ cell depletion, which peaked just before the reappearance of peripheral CD8+ T cells. Tax-specific CD8+ T-cell responses were detected in these recovered CD8+ T cells. Importantly, anti-HTLV-1 antibodies also increased after CD8+ cell depletion, indicating HTLV-1 antigen expression. These results provide evidence indicating that HTLV-1 can proliferate from the latent phase in the absence of CD8+ cells and suggest that CD8+ cells are responsible for the control of HTLV-1 replication. IMPORTANCE HTLV-1 can cause serious diseases such as adult T-cell leukemia (ATL) in humans after chronic asymptomatic latent infection with substantial proviral load. Proviruses are detectable in peripheral lymphocytes in HTLV-1 carriers, and the association of a higher proviral load with a higher risk of disease progression has been observed. However, neither substantial viral structural protein expression nor viral replication was detectable in vivo. Cumulative studies have indicated involvement of CD8+ cells, including virus-specific CD8+ T cells in the control of HTLV-1 replication. In the present study, we showed that CD8+ cell depletion by monoclonal anti-CD8 antibody administration results in HTLV-1 expression and an increase in proviral load in HTLV-1-infected cynomolgus macaques. Our results indicate that HTLV-1 can proliferate in the absence of CD8+ cells, suggesting that CD8+ cells are responsible for the control of HTLV-1 replication. This study provides insights into the mechanism of virus-host immune interaction in latent HTLV-1 infection.


Subject(s)
Human T-lymphotropic virus 1 , Latent Infection , Adult , Animals , Humans , CD8-Positive T-Lymphocytes , Human T-lymphotropic virus 1/physiology , Proviruses , Macaca fascicularis , Cell Proliferation , Viral Load
4.
AIDS ; 36(12): 1629-1641, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35848590

ABSTRACT

OBJECTIVE: In HIV type 1 (HIV-1) infection, virus-specific B-cell and neutralizing antibody (NAb) responses are impaired but exert selective pressure on target viral Envelope (Env) resulting in prominent sequence diversification among geographical areas. The basal induction patterns of HIV Env-specific B cells and their interaction with HIV Env awaits clarification. DESIGN: We investigated the relationship of Env polymorphisms and Env-specific B-cell responses in treatment-naive HIV-1 CRF01_AE-infected Vietnamese. METHODS: Samples of 43 HIV-1 CRF01_AE infection-identified individuals were divided into acute-phase ( n  = 12) and chronic-phase ( n  = 31) by combined criteria of serological recent-infection assay and clinical parameters. We quantified subcloning-based polymorphic residue site numbers in plasma-derived Env variable region 1-5 (V1-V5)-coding regions within each individual, designating their summation within each region as variant index. Peripheral blood Env gp 140-specific B-cell responses and plasma neutralizing activity of Env pseudoviruses were examined to analyze their relationship with variant index. RESULTS: HIV-1 CRF01_AE Env gp140-specific total B-cell and plasma cell (CD19 + IgD - CD27 + CD38 + CD138 + ) responses were determined. In chronic-phase samples, significant correlation of variant index in all Env V1-V5 regions with Env-specific plasma cell responses was shown, and V1-V5 total variant index correlated stronger with Env-specific plasma cell as compared with total Env-specific B-cell responses. Env V5 variant index was significantly higher in chronic-phase cross-neutralizers of V5-polymorphic/VRC01-insensitive CRF01_AE Env. CONCLUSION: Results revealed the association between circulating Env-specific plasma cell responses and Env polymorphisms, implicating selective pressure on Env by plasma cell-derived antibodies and conversely suggests that Env-specific B-cell induction alone is insufficient for exerting Env selective pressure in HIV infection.


Subject(s)
HIV Infections , HIV-1 , Antibodies, Neutralizing , Cell Differentiation , HIV Antibodies , HIV-1/genetics , Humans
5.
J Med Primatol ; 51(1): 56-61, 2022 02.
Article in English | MEDLINE | ID: mdl-34750827

ABSTRACT

Acute-phase neutralizing antibody (NAb) passive immunization in simian immunodeficiency virus (SIV)-infected rhesus macaques (Macaca mulatta) can confer stringent viremia control with T-cell augmentation. In one NAb-infused SIV partial controller, we identify chronic-phase Nef-specific CD107a+ CD4+ T-cell response maintenance, implicating that NAb infusion modulates long-term T-cell responses even within viremic control.


Subject(s)
Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Antibodies, Neutralizing , CD4-Positive T-Lymphocytes , Macaca mulatta , T-Lymphocytes
6.
AIDS ; 35(14): 2281-2288, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34224443

ABSTRACT

OBJECTIVE: Analysis of the quantity and quality of epitope-specific CD8+ T-cell responses is crucial for understanding the mechanism of HIV/simian immunodeficiency virus (SIV) replication control. We have previously shown that acute-phase passive infusion of neutralizing antibodies (NAbs) results in augmented broad T-cell responses and robust SIVmac239 control in rhesus macaques. Analyzing long-term dynamics of CD8+ T-cell responses in these SIV controllers provides important insights into designing lasting anti-HIV immunity. DESIGN: We analyzed dynamics and metabolic/functional profiles of SIV-specific CD8+ T-cell responses in rhesus macaques that controlled SIVmac239 replication following acute-phase passive NAb infusion. METHODS: SIV epitope-specific CD8+ T-cell responses in peripheral blood at multiple chronic-phase time points were investigated in four passive NAb-infused SIV controllers. In particular, expression patterns of Eomesodermin (Eomes), phosphorylated AMP kinase (pAMPK), CD28 and programmed death-1 (PD-1) were examined. RESULTS: In the NAb-infused SIV controllers, a single epitope-specific CD8+ T-cell response detected from acute infection and maintaining low levels up to year 1 showed a surge thereafter, up to year 2 postchallenge. Retention of an effector-skewed and unexhausted Eomes-high/pAMPK-low/CD28-negative/PD-1-low subpopulation in these epitope-specific CD8+ T cells implicated their front-line commitment in residual viral replication control. CONCLUSION: In long-term SIV control following acute-phase passive NAb infusion, a single-epitope, high-quality CTL response was dominantly induced in the chronic phase. These results likely describe one favorable pattern of immunodominant epitope-specific CD8+ T-cell preservation and suggest the importance of incorporating metabolic marker signatures for understanding NAb/T-cell synergism-based HIV/SIV control.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Antibodies, Neutralizing , CD8-Positive T-Lymphocytes , Epitopes , Macaca mulatta
7.
PLoS Pathog ; 17(7): e1009668, 2021 07.
Article in English | MEDLINE | ID: mdl-34280241

ABSTRACT

SARS-CoV-2 infection presents clinical manifestations ranging from asymptomatic to fatal respiratory failure. Despite the induction of functional SARS-CoV-2-specific CD8+ T-cell responses in convalescent individuals, the role of virus-specific CD8+ T-cell responses in the control of SARS-CoV-2 replication remains unknown. In the present study, we show that subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ T cells in cynomolgus macaques. Eight macaques were intranasally inoculated with 105 or 106 TCID50 of SARS-CoV-2, and three of the eight macaques were treated with a monoclonal anti-CD8 antibody on days 5 and 7 post-infection. In these three macaques, CD8+ T cells were undetectable on day 7 and thereafter, while virus-specific CD8+ T-cell responses were induced in the remaining five untreated animals. Viral RNA was detected in nasopharyngeal swabs for 10-17 days post-infection in all macaques, and the kinetics of viral RNA levels in pharyngeal swabs and plasma neutralizing antibody titers were comparable between the anti-CD8 antibody treated and untreated animals. SARS-CoV-2 RNA was detected in the pharyngeal mucosa and/or retropharyngeal lymph node obtained at necropsy on day 21 in two of the untreated group but undetectable in all macaques treated with anti-CD8 antibody. CD8+ T-cell responses may contribute to viral control in SARS-CoV-2 infection, but our results indicate possible containment of subacute viral replication in the absence of CD8+ T cells, implying that CD8+ T-cell dysfunction may not solely lead to viral control failure.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/veterinary , Macaca fascicularis/immunology , Macaca fascicularis/virology , Monkey Diseases/immunology , Monkey Diseases/virology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , Disease Models, Animal , Female , Humans , Kinetics , Lymphocyte Depletion/veterinary , Male , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , Virus Replication/immunology
8.
Biochem Biophys Res Commun ; 512(2): 213-217, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30878187

ABSTRACT

In human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections, host major histocompatibility complex class I (MHC-I) genotypes have a great impact on viral replication and MHC-I-associated viral genome mutations are selected under CD8+ T-cell pressure. Association of MHC-I genotypes with HIV/SIV control has been investigated at MHC-I allele levels but not fully at haplotype levels. We previously established groups of rhesus macaques sharing individual MHC-I haplotypes. In the present study, we compared viral genome diversification after SIV infection in macaques possessing a protective MHC-I haplotype, 90-010-Id, with those possessing a non-protective MHC-I haplotype, 90-010-Ie. These two MHC-I haplotypes are associated with immunodominant CD8+ T-cell responses targeting similar regions of viral Nef antigen. Analyses of viral genome sequences and antigen-specific T-cell responses showed four and two candidates of viral CD8+ T-cell targets associated with 90-010-Id and 90-010-Ie, respectively, in addition to the Nef targets. In these CD8+ T-cell target regions, higher numbers of mutations were detected at the setpoint after SIV infection in macaques possessing 90-010-Id than those possessing 90-010-Ie. These results indicate higher selective pressure on overall CD8+ T-cell targets associated with the protective MHC-I haplotype, suggesting a pattern of HIV/SIV control by multiple target-specific CD8+ T-cell responses.


Subject(s)
CD8-Positive T-Lymphocytes/virology , Genes, MHC Class I , Macaca mulatta/virology , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Immunodeficiency Virus/physiology , Animals , CD8-Positive T-Lymphocytes/metabolism , Genes, nef , Genome, Viral , Haplotypes , Macaca mulatta/genetics , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...