Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem ; 104: 117697, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38599005

ABSTRACT

Sphingosine-1-phosphate and its receptors (S1PRs) are involved in several diseases such as auto immunity, inflammation and cardiovascular disorders. The S1P analogue fingolimod (Gilenya®) is currently in use for the treatment of relapsing multiple sclerosis. S1PRs are also promising targets for clinical molecular imaging in vivo. The organ distribution of individual S1PRs can be potentially achieved by using S1PR subtype-specific (radiolabeled) chemical probes. Here, we report our efforts on synthesis and in vivo potency determination of new ligands for the S1P receptor 3 (S1P3) based on the S1P3 antagonist TY-52156 and in validation of a potential imaging tracer in vivo using Positron Emission Tomography (PET) after 18F-labelling. A p-fluorophenyl derivative exhibited excellent S1P3 antagonist activity in vitro, good serum stability, and medium lipophilicity. In vivo biodistribution experiments using 18F-PET exhibited significant uptake in the myocardium suggesting potential applications in cardiac imaging.


Subject(s)
Fingolimod Hydrochloride , Positron-Emission Tomography , Sphingosine-1-Phosphate Receptors , Fingolimod Hydrochloride/pharmacology , Lysophospholipids , Positron-Emission Tomography/methods , Receptors, Lysosphingolipid/metabolism , Tissue Distribution
2.
Bioeng Transl Med ; 8(4): e10425, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37476059

ABSTRACT

Clathrin-mediated endocytosis (CME) is an essential cell physiological process of broad biomedical relevance. Since the recent introduction of Pitstop-2 as a potent CME inhibitor, we and others have reported on substantial clathrin-independent inhibitory effects. Herein, we developed and experimentally validated a novel fluorescent derivative of Pitstop-2, termed RVD-127, to clarify Pitstop-2 diverse effects. Using RVD-127, we were able to trace additional protein targets of Pitstop-2. Besides inhibiting CME, Pitstop-2 and RVD-127 proved to directly and reversibly bind to at least two members of the small GTPase superfamily Ran and Rac1 with particularly high efficacy. Binding locks the GTPases in a guanosine diphosphate (GDP)-like conformation disabling their interaction with their downstream effectors. Consequently, overall cell motility, mechanics and nucleocytoplasmic transport integrity are rapidly disrupted at inhibitor concentrations well below those required to significantly reduce CME. We conclude that Pitstop-2 is a highly potent, reversible inhibitor of small GTPases. The inhibition of these molecular switches of diverse crucial signaling pathways, including nucleocytoplasmic transport and overall cell dynamics and motility, clarifies the diversity of Pitstop-2 activities. Moreover, considering the fundamental importance and broad implications of small GTPases in physiology, pathophysiology and drug development, Pitstop-2 and RVD-127 open up novel avenues.

3.
Bioorg Med Chem ; 90: 117350, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37270903

ABSTRACT

To develop matrix metalloproteinase inhibitors (MMPIs) for both therapy and medicinal imaging by fluorescence-based techniques or positron-emission tomography (PET), a small library of eighteen N-substituted N-arylsulfonamido d-valines were synthesized and their potency to inhibit two gelatinases (MMP-2, and MMP-9), two collagenases (MMP-8, and MMP-13) and macrophage elastase (MMP-12) was determined in a Structure-Activity-Relation study with ({4-[3-(5-methylthiophen-2-yl)-1,2,4-oxadiazol-5-yl]phenyl}sulfonyl)-d-valine (1) as a lead. All compounds were shown to be more potent MMP-2/-9 inhibitors (nanomolar range) compared to other tested MMPs. This is a remarkable result considering that a carboxylic acid group is the zinc binding moiety. The compound with a terminal fluoropropyltriazole group at the furan ring (P1' substituent) was only four times less potent in inhibiting MMP-2 activity than the lead compound 1, making this compound a promising probe for PET application (after using a prosthetic group approach to introduce fluorine-18). Compounds with a TEG spacer and a terminal azide or even a fluorescein moiety at the sulfonylamide N atom (P2' substituent) were almost as active as the lead structure 1, making the latter derivative a suitable fluorescence imaging tool.


Subject(s)
Matrix Metalloproteinase 2 , Matrix Metalloproteinase Inhibitors , Matrix Metalloproteinase Inhibitors/pharmacology , Structure-Activity Relationship , Valine , Carboxylic Acids
4.
Chem Rec ; 23(9): e202300140, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37229773

ABSTRACT

For nucleophilic monofluorination, amine/HF reagents such as Et3 N⋅3HF, Pyr⋅9HF (Olah's reagent) and similar combinations belong to the most frequently used fluoride sources, whereupon the selectivity of these reagents can be very different depending of its acidity, the nucleophilicity of the fluoride equivalent, and the structure of the particular substrate. These reagents can be used safely in ordinary chemistry laboratories for nucleophilic substitution reactions by fluoride at sp3 -hybridized carbon centers. For ring opening reactions of epoxides, the regio- and stereoselectivity is very much depending of the nature of the epoxide and the acidity of the HF reagent favoring either SN 1 or SN 2 type reactions. Similarly, the outcome of halofluorination and similar reactions with sulfur or seleno electrophiles can be controlled by the particular combination of the electrophile and the fluoride source. Examples for the application of these reaction types for the synthesis of fluorine-containing analogues of natural products or biologically relevant compounds are in the focus of this personal account.

5.
Org Biomol Chem ; 20(47): 9337-9350, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36107003

ABSTRACT

A series of all stereoisomers of ß-CF3 or ß-C2F5 substituted prolines and their dipeptide derivatives were synthesized. Mouse plasma stability assay was carried out to study the impact of fluoroalkyl substituents on the proteolytic stability of proline-derived peptides. The effect of the (R)-/(S)-configuration at the C-2 atom in combination with electronic and steric effects imposed by fluoroalkyl groups was addressed to rationalize the difference in the half-life stability of diastereomeric ß-CF3-Pro-Gly and ß-C2F5-Pro-Gly derivatives and compared to those of parent (S)-Pro-Gly and (R)-Pro-Gly dipeptides. The steric effect was predominant when the ß-CF3 or ß-C2F5 group was placed properly to create a spatial interference within the pockets of proteases, thereby protecting the substances from degradation (e.g., for cis-isomeric derivatives). Otherwise, a smaller electronic effect accelerating proteolysis was in charge (i.e., for the (2S,3S) isomers).


Subject(s)
Electronics , Proline , Animals , Mice , Peptides
6.
Mol Imaging Biol ; 24(3): 434-443, 2022 06.
Article in English | MEDLINE | ID: mdl-34750717

ABSTRACT

INTRODUCTION: Dysregulated activity of matrix metalloproteinases (MMPs) drives a variety of pathophysiological conditions. Non-invasive imaging of MMP activity in vivo promises diagnostic and prognostic value. However, current targeting strategies by small molecules are typically limited with respect to the bioavailability of the labeled MMP binders in vivo. To this end, we here introduce and compare three chemical modifications of a recently developed barbiturate-based radiotracer with respect to bioavailability and potential to image MMP activity in vivo. METHODS: Barbiturate-based MMP inhibitors with an identical targeting unit but varying hydrophilicity were synthesized, labeled with technetium-99m, and evaluated in vitro and in vivo. Biodistribution and radiotracer elimination were determined in C57/BL6 mice by serial SPECT imaging. MMP activity was imaged in a MMP-positive subcutaneous xenograft model of human K1 papillary thyroid tumors. In vivo data were validated by scintillation counting, autoradiography, and MMP immunohistochemistry. RESULTS: We prepared three new 99mTc-labeled MMP inhibitors, bearing either a glycine ([99mTc]MEA39), lysine ([99mTc]MEA61), or the ligand HYNIC with the ionic co-ligand TPPTS ([99mTc]MEA223) yielding gradually increasing hydrophilicity. [99mTc]MEA39 and [99mTc]MEA61 were rapidly eliminated via hepatobiliary pathways. In contrast, [99mTc]MEA223 showed delayed in vivo clearance and primary renal elimination. In a thyroid tumor xenograft model, only [99mTc]MEA223 exhibited a high tumor-to-blood ratio that could easily be delineated in SPECT images. CONCLUSION: Introduction of HYNIC/TPPTS into the barbiturate lead structure ([99mTc]MEA223) results in delayed renal elimination and allows non-invasive MMP imaging with high signal-to-noise ratios in a papillary thyroid tumor xenograft model.


Subject(s)
Matrix Metalloproteinase Inhibitors , Thyroid Neoplasms , Animals , Barbiturates , Biological Availability , Humans , Ligands , Matrix Metalloproteinases/metabolism , Mice , Technetium/chemistry , Tissue Distribution , Tomography, Emission-Computed, Single-Photon/methods
7.
Org Biomol Chem ; 19(25): 5607-5623, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34100055

ABSTRACT

The synthesis of aliphatic (pentafluoro-λ6-sulfanyl)(SF5)-substituted compounds is more challenging than that of the related CF3-substituted analogues. Previous investigations of [3,3]-sigmatropic rearrangements of γ-SF5-substituted allylic alcohols failed to yield 3-SF5-substituted carboxylic acid derivatives. Herein, we present the synthesis of a series of 1-SF5-alk-1-en-3-ols and our efforts to apply them in Johnson-Claisen, ester enolate-Claisen, and Ireland-Claisen rearrangements. Unfortunately, these reactions failed to include the 1-SF5-substituted 1,2-double bond, although successful reactions of analogous CF3-allylic alcohols were reported. Further experiments revealed that bulkiness rather than electronic properties of the SF5 group prevented [3,3]-sigmatropic rearrangements. Indeed, the introduction of a competing second vinyl group into the system (1-SF5-penta-1,4-dien-3-ol) confirmed that a Johnson-Claisen rearrangement was successful (92% yield of methyl 7-SF5-hepta-4,6-dienoate) with incorporation of the unsubstituted 4,5-double bond while the 1-SF5-substituted 1,2-double bond remained unchanged. Efforts to apply 1-(SF5CF2)-substituted 1,2-double bond systems, which are similar to CF3 analogues in steric requirements, in Johnson-Claisen or ester enolate-Claisen rearrangements failed because of the instability of the SF5CF2 substituent under various reaction conditions. On the other hand, when the SF5 group was separated from the reaction center by a CH2 group instead (5-SF5-pent-3-en-2-ol), Johnson-Claisen rearrangements using six orthoesters provided the target 2-substituted 3-(CH2SF5)-hex-4-enoates in 55-76% yields as ∼1 : 1 mixtures of diastereomers. As an example to demonstrate the utility of these products, methyl 3-(CH2SF5)-hex-4-enoate was reduced, and the formed alcohol was oxidized to the aldehyde. Finally, initial experiments showed that the synthetic sequence developed for SF5 compounds is also applicable for analogous CF3-substituted allylic alcohols (5-CF3-pent-3-en-2-ol) and their Johnson-Claisen rearrangement.

8.
Bioorg Med Chem ; 28(22): 115726, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33007549

ABSTRACT

Stereoisomeric 2-aryl-2-fluoro-cyclopropan-1-amines have been discovered as a new class of σ receptor ligands showing different selectivity for the two subtypes of the receptor. Generally, compounds substituted in 4-position are much more active than corresponding 3-substituted isomers. trans-2-Fluoro-2-(4-methoxyphenyl)cyclopropan-1-amine (19a) was the most potent (Ki = 4.8 nM) σ1 receptor ligand, while cis-2-fluoro-2-(4-trifluoromethylphenyl)cyclopropan-1-amine (20b) was the most potent (Ki = 95 nM) σ2 receptor ligand.


Subject(s)
Amines/pharmacology , Cyclopropanes/pharmacology , Receptors, sigma/metabolism , Amines/chemistry , Animals , Cyclopropanes/chemistry , Dose-Response Relationship, Drug , Guinea Pigs , Halogenation , Ligands , Molecular Structure , Rats , Stereoisomerism , Structure-Activity Relationship
9.
Bioconjug Chem ; 31(4): 1117-1132, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32181649

ABSTRACT

Dysregulated expression or activation of matrix metalloproteinases (MMPs) is observed in many kinds of life-threatening diseases. Therefore, MMP imaging-for example, with radiolabeled MMP inhibitors (MMPIs)-potentially represents a valuable tool for clinical diagnostics using noninvasive single photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging. Despite numerous preclinical imaging approaches, translation to a clinical setting has not yet been successful. We introduce and oppose three potential radiofluorinated MMP-targeted imaging probes, modified by the introduction of pentamethine cyanine (Cy5) dyes and therefore containing both radio- as well as fluorescent label with respect to their capability to assess MMP activity in vivo by means of scintigraphic (PET) and/or fluorescent (NIRF) imaging. New hybrid MMPI tracer candidates, structurally based on radiofluorinated pyrimidine-2,4,6-triones (barbiturates) from previous approaches, were synthesized by convenient two-step syntheses. In the first step, Cy5 dyes, varying in the number of sulfonate groups (nSO3- = 1, 2, or 4) and bearing an additional "clickable" alkyne moiety, were coupled to the barbiturate MMPI by amide formation. In the second step, the [18F]fluoride radiolabel was introduced into the resulting Cy5 dye conjugates by "radio-click" chemistry. Biodistribution studies of these hybrid tracer candidates were assessed and compared in C57BL/6 mice by PET as well as fluorescence imaging. MMP activity was imaged in a MMP-positive mouse model of irritant contact dermatitis (ICD) by PET and sequential fluorescence reflectance imaging (FRI), respectively. In vivo data were validated by scintillation counting, gelatin zymography, and MMP-histology. Three new potential hybrid MMP imaging probes were prepared, differing essentially in the number of sulfonate groups, introduced by Cy5 dye components. Although the hydrophilicity of these compounds was substantially increased, 10a (nSO3- = 1) and 10b (nSO3- = 2) were still rapidly eliminated via unfavorable hepatobiliary pathways, as observed in earlier approaches. Only 11 (nSO3- = 4) showed delayed in vivo clearance and a shift towards higher renal elimination. In the chosen mouse model of ICD, only 11 (nSO3- = 4) significantly accumulated in the inflamed mouse ear, which could be precisely visualized by means of PET and FRI.


Subject(s)
Barbiturates/chemistry , Barbiturates/pharmacokinetics , Fluorescent Dyes/chemistry , Iodine Radioisotopes/chemistry , Matrix Metalloproteinases/metabolism , Optical Imaging/methods , Positron-Emission Tomography/methods , Animals , Halogenation , Mice , Mice, Inbred C57BL , Radioactive Tracers , Tissue Distribution
10.
Bioconjug Chem ; 29(11): 3715-3725, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30277751

ABSTRACT

Matrix metalloproteinases (MMPs) are emerging as pivotal fine-tuners of cell function in tissue homeostasis and in various pathologies, in particular inflammation. In vivo monitoring of the activity of specific MMPs, therefore, provides high potential for assessing disease progression and tissue function, and manipulation of MMP activity in tissues and whole organisms may further provide a mode of controlling pathological processes. We describe here the synthesis of novel fluorinated and nonfluorinated analogues of a secondary sulfonamide-based lead structure, compound 2, and test their efficacy as in vivo inhibitors and tracers of the gelatinases, MMP-2 and MMP-9. Using a murine neuroinflammatory model, we show that compound 2 is a highly effective in vivo inhibitor of both MMP-2 and MMP-9 activity with little or no adverse effects even after long-term daily oral administration. A fluorescein-labeled derivative compound 17 shows direct binding to activated gelatinases surrounding inflammatory cuffs in the neuroinflammation model and to pancreatic ß-cells in the islets of Langerhans, colocalizing with MMP-2 and MMP-9 activity as detected using in situ zymography techniques. These results demonstrate that compound 2 derivatives have potential as in vivo imaging tools and for future development for specific MMP-2 versus MMP-9 probes. Our chemical modifications mainly target the residues directed toward the S1' and S2' pockets and, thereby, provide new information on the structure-activity relationships of this inhibitor type.


Subject(s)
Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase Inhibitors/chemistry , Matrix Metalloproteinase Inhibitors/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Animals , Cell Line , Female , Halogenation , Humans , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/enzymology , Insulin-Secreting Cells/metabolism , Matrix Metalloproteinase 2/chemistry , Matrix Metalloproteinase 9/chemistry , Matrix Metalloproteinase Inhibitors/adverse effects , Matrix Metalloproteinase Inhibitors/chemical synthesis , Mice, Inbred C57BL , Molecular Docking Simulation , Structure-Activity Relationship , Sulfonamides/adverse effects , Sulfonamides/chemical synthesis
11.
EJNMMI Radiopharm Chem ; 3: 10, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30101186

ABSTRACT

BACKGROUND: To study MMP activity in vivo in disease, several radiolabeled MMP inhibitors functioning as radiotracers have been evaluated by means of SPECT and PET. Unfortunately, most of them suffer from metabolic instability, mainly hepatobiliary clearance and insufficient target binding. The introduction of a fluorine atom into MMPIs could contribute to target binding, enhance the metabolic stability and might shift the clearance towards more renal elimination. Recently developed α-sulfonylaminohydroxamic acid based γ-fluorinated inhibitors of MMP-2 and -9 provide promising fluorine interactions with the enzyme active site and high MMP inhibition potencies. The aim of this study is the (radio)synthesis of a γ-fluorinated MMP-2 and -9 inhibitor to evaluate its potential as a radiotracer to image MMP activity in vivo. RESULTS: Two new fluorine-containing, enantiomerically pure inhibitors for MMP-2 and -9 were synthesized in a six step sequence. Both enantiomers exhibited equal inhibition potencies in the low nanomolar and subnanomolar range. LogD value indicated better water solubility compared to the CGS 25966 based analog. The most potent inhibitor was successfully radiofluorinated. In vivo biodistribution in wild type mice revealed predominantly hepatobiliary clearance. Two major radioactive metabolites were found in different organs. Defluorination of the radiotracer was not observed. CONCLUSION: (Radio)synthesis of a CGS based γ-fluorinated MMP inhibitor was successfully accomplished. The (S)-enantiomer, which normally shows no biological activity, also exhibited high MMP inhibition potencies, which may be attributed to additional interactions of fluorine with enzyme's active site. Despite higher hydrophilicity no significant differences in the clearance characteristics compared to non-fluorinated MMPIs was observed. Metabolically stabilizing effect of the fluorine was not monitored in vivo in wild type mice.

12.
Chem Commun (Camb) ; 54(69): 9683-9686, 2018 Aug 23.
Article in English | MEDLINE | ID: mdl-30101963

ABSTRACT

The reaction of trifluoroaldol acetal and other polyfluoroalkyl ß-ketoacetals with ethyl isocyanoacetate was applied for the preparation of hitherto unknown fluorinated amino acids, cis- and trans-3-CF3/C2F5-prolines as well as trans-3-CF2Br/CF2Cl/CHF2-3-hydroxyprolines.

13.
Beilstein J Org Chem ; 14: 373-380, 2018.
Article in English | MEDLINE | ID: mdl-29507642

ABSTRACT

Aldol reactions belong to the most frequently used C-C bond forming transformations utilized particularly for the construction of complex structures. The selectivity of these reactions depends on the geometry of the intermediate enolates. Here, we have reacted octyl pentafluoro-λ6-sulfanylacetate with substituted benzaldehydes and acetaldehyde under the conditions of the silicon-mediated Mukaiyama aldol reaction. The transformations proceeded with high diastereoselectivity. In case of benzaldehydes with electron-withdrawing substituents in the para-position, syn-α-SF5-ß-hydroxyalkanoic acid esters were produced. The reaction was also successful with meta-substituted benzaldehydes and o-fluorobenzaldehyde. In contrast, p-methyl-, p-methoxy-, and p-ethoxybenzaldehydes led selectively to aldol condensation products with (E)-configured double bonds in 30-40% yields. In preliminary experiments with an SF5-substituted acetic acid morpholide and p-nitrobenzaldehyde, a low amount of an aldol product was formed under similar conditions.

14.
Angew Chem Int Ed Engl ; 56(48): 15456-15460, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29044954

ABSTRACT

A straightforward access to a hitherto unknown C3 -symmetric tricyclic triol both in racemic and enantiopure forms has been developed. Treatment of 7-tert-butoxynorbornadiene with peroxycarboxylic acids provided mixtures of C1 - and C3 -symmetric 3,5,7-triacyloxynortricyclenes via transannular π-cyclization and replacement of the tert-butoxy group. By refluxing in formic acid, the C1 -symmetric esters were converted to the C3 -symmetric formate. Hydrolysis gave diastereoisomeric triols, which were separated by recrystallization. Enantiomer resolution via diastereoisomeric tri(O-methylmandelates) delivered the target triols on a gram scale. The pure enantiomers are useful as core units of dopants for liquid crystals.

15.
J Org Chem ; 82(23): 12863-12868, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29019681

ABSTRACT

Hitherto unknown cis- and trans-1-amino-3-hydroxy-3-methylcyclobutanecarboxylic acids were synthesized in multigram scale. The obtained compounds can be considered as achiral conformationally restricted analogues of threonine with fixed spatial orientation of functional groups. pKa values are noticeably different for both amino acids. According to the X-ray data the cyclobutane rings in both compounds are almost planar (the corresponding torsion angles are below 7°).

16.
Bioorg Med Chem Lett ; 27(10): 2099-2101, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28390942

ABSTRACT

We report a series of tranylcypromine analogues containing a fluorine in the cyclopropyl ring. A number of compounds with additional m- or p-substitution of the aryl ring were micromolar inhibitors of the LSD1 enzyme. In cellular assays, the compounds inhibited the proliferation of acute myeloid leukemia cell lines. Increased levels of the biomarkers H3K4me2 and CD86 were consistent with LSD1 target engagement.


Subject(s)
Enzyme Inhibitors/chemistry , Histone Demethylases/antagonists & inhibitors , Tranylcypromine/analogs & derivatives , B7-2 Antigen/metabolism , Biomarkers/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/toxicity , Halogenation , Histone Demethylases/metabolism , Histones/metabolism , Humans , Inhibitory Concentration 50 , Tranylcypromine/chemical synthesis , Tranylcypromine/toxicity
17.
Bioorg Med Chem ; 25(7): 2167-2176, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28284866

ABSTRACT

BODIPYs (boron dipyrromethenes) are fluorescent dyes which show high stability and quantum yields. They feature the possibility of selective 18F-fluorination at the boron-core. Attached to a bioactive molecule and labeled with [18F]fluorine, the resulting compounds are promising tracers for multimodal imaging in vivo and can be used for PET and fluorescence imaging. A BODIPY containing a phenyl and a hydroxy substituent on boron was synthesized and characterized. Fluorinated and hydroxy substituted dyes were coupled to an isatin-based caspase inhibitor via cycloaddition and the resulting compounds were evaluated in vitro in caspase inhibition assays. The metabolic stability and the formed metabolites were investigated by incubation with mouse liver microsomes and LC-MS analysis. Subsequently the fluorophores were labeled with [18F]fluorine and an in vivo biodistribution study using dynamic PET was performed.


Subject(s)
Boron Compounds/chemical synthesis , Boron Compounds/pharmacology , Fluorine Radioisotopes/pharmacology , Animals , Boron Compounds/pharmacokinetics , Chromatography, Liquid , Cycloaddition Reaction , Fluorine Radioisotopes/pharmacokinetics , Mice , Mice, Inbred C57BL , Microsomes, Liver/drug effects , Multimodal Imaging , Spectrum Analysis/methods , Tissue Distribution
18.
Org Biomol Chem ; 15(3): 672-679, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-27976770

ABSTRACT

2-Amino-2-(trifluoromethoxy)butanoic acid (O-trifluoromethyl homoserine) was synthesized as a racemate and in both enantiomeric forms. The measured pKa and log D values establish the compound as a promising analogue of natural aliphatic amino acids.


Subject(s)
Amino Acids/chemistry , Amino Acids/chemical synthesis , Butyrates/chemistry , Butyrates/chemical synthesis , Hydrocarbons, Fluorinated/chemistry , Chemistry, Physical , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Structure
19.
J Org Chem ; 82(3): 1638-1648, 2017 02 03.
Article in English | MEDLINE | ID: mdl-28034315

ABSTRACT

Earlier studies have shown that [3,3]-sigmatropic rearrangements of allyl esters are useful for the construction of fluorine-containing carboxylic acid derivatives. This paper describes the synthesis of 3-aryl-pent-4-enoic acid derivatives bearing either a pentafluorosulfanyl (SF5) or a trifluoromethyl (CF3) substituent in the 2-position by treatment of corresponding SF5- or CF3-acetates of p-substituted cinnamyl alcohols with triethylamine followed by trimethylsilyl triflate (TMSOTf). This Ireland-Claisen rearrangement delivered approximate 1:1 mixtures of syn/anti diastereoisomers due to tiny differences (<0.5 kcal/mol) both in the energy of (Z)/(E)-isomeric ester enolates and in the alternative Zimmerman-Traxler transition states of model compounds as shown by DFT calculations. Acidic reaction conditions have to be avoided since addition of the reagents in opposite sequence (first TMSOTf then Et3N) led to oligomerization of the cinnamyl SF5- and CF3-acetates. Treatment of the corresponding regioisomeric 1-phenyl-prop-2-en-1-yl acetates under the latter conditions resulted in [1,3]-sigmatropic rearrangement and subsequent oligomerization of the intermediately formed cinnamyl esters. When Et3N was added first followed by TMSOTf, no further reaction of the formed ester was detected.

20.
Angew Chem Int Ed Engl ; 55(32): 9432-6, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27332650

ABSTRACT

We disclose the first asymmetric activation of a non-activated aliphatic C-F bond in which a conceptually new desymmetrization of 1,3-difluorides by silicon-induced selective C-F bond scission is a key step. The combination of a cinchona alkaloid based chiral ammonium bifluoride catalyst and N,O-bis(trimethylsilyl)acetoamide (BSA) as the silicon reagent enabled the efficient catalytic cycle of asymmetric Csp3 -F bond cleavage under mild conditions with high enantioselectivities. The ortho effect of the aryl group at the prostereogenic center is remarkable. This concept was applied for the asymmetric synthesis of promising agrochemical compounds, 3,5-diaryl-5-fluoromethyloxazolidin-2-ones bearing a quaternary carbon center.

SELECTION OF CITATIONS
SEARCH DETAIL
...