Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Psychopharmacology (Berl) ; 240(12): 2641-2655, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37700086

ABSTRACT

RATIONALE: Extracellular proteolytic activity plays an important role in memory formation and the preservation of cognitive function. Previous studies have shown increased levels of plasminogen activator inhibitor-1 (PAI-1) in the brain of mouse models of Alzheimer's disease (AD) and plasma of AD patients, associated with memory and cognitive decline; however, the exact function of PAI-1 in AD onset and progression is largely unclear. OBJECTIVE: In this study, we evaluated a novel PAI-1 inhibitor, TM5A15, on its ability to prevent or reverse memory deficits and decrease Aß levels and plaque deposition in APP/PS1 mice. METHODS: We administered TM5A15 mixed in a chow diet to 3-month and 9-month-old APP/PS1 mice before and after neuropathological changes were distinguishable. We then evaluated the effects of TM5A15 on memory function and neuropathology at 9 months and 18 months of age. RESULTS: In the younger mice, 6 months of TM5A15 treatment protected against recognition and short-term working memory impairment. TM5A15 also decreased oligomer levels and amyloid plaques, and increased mBDNF expression in APP/PS1 mice at 9 months of age. In aged mice, 9 months of TM5A15 treatment did not significantly improve memory function nor decrease amyloid plaques. However, TM5A15 treatment showed a trend in decreasing oligomer levels in APP/PS1 mice at 18 months of age. CONCLUSION: Our results suggest that PAI-1 inhibition could improve memory function and reduce the accumulation of amyloid levels in APP/PS1 mice. Such effects are more prominent when TM5A15 is administered before advanced AD pathology and memory deficits occur.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice , Humans , Animals , Infant , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Plaque, Amyloid/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/therapeutic use , Alzheimer Disease/metabolism , Memory Disorders/drug therapy , Memory Disorders/prevention & control , Memory Disorders/complications , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Presenilin-1/genetics
2.
Neurobiol Aging ; 126: 113-122, 2023 06.
Article in English | MEDLINE | ID: mdl-36989547

ABSTRACT

Most patients with Alzheimer's disease (AD) develop neuropsychiatric symptoms (NPS) alongside cognitive decline, and apathy is one of the most common symptoms. Few preclinical studies have investigated the biological substrates underlying NPS in AD. In this study, we used a cross-sectional design to characterize apathy-like behaviors and assess memory in 5xFAD and wildtype control mice at 6, 12, and 16 months of age. Nest building, burrowing, and marble burying were used to test representative behaviors of apathy, and a composite score of apathy-like behavior was generated from these assays. Soluble Aß42 and plaques were quantified in the prefrontal cortex and hippocampus of the 5xFAD mice with the highest and lowest composite scores using ELISA and histology. Results suggest that 5xFAD mice develop significant apathy-like behaviors starting at 6 months of age that worsen with aging and are positively correlated with soluble Aß42 and plaques in the prefrontal cortex and hippocampus. Our findings highlight the utility of studying NPS in mouse models of AD to uncover important relationships with underlying neuropathology.


Subject(s)
Alzheimer Disease , Apathy , Mice , Animals , Alzheimer Disease/pathology , Amyloid beta-Peptides , Cross-Sectional Studies , Mice, Transgenic , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...