Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Neurointerv Surg ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37491380

ABSTRACT

BACKGROUND: Recanalization of coiled aneurysms remains unresolved. To limit aneurysm recanalization after embolization with coils, we propose an innovative approach to optimize aneurysm healing using fucoidan-coated coils. OBJECTIVE: To evaluate the short-term efficacy and long-term safety of the new coil system with conventional angiography, histology, and multiphoton microscopy for follow-up of fibrosis and neointima formation. METHODS: We conducted a feasibility study on rabbit elastase-induced aneurysms. Embolization was carried out with bare platinum coils, fucoidan-coated coils, or dextran-coated coils. Aneurysms were controlled after 1 month by digital subtraction angiography (DSA). Aneurysm samples were collected and processed for histological analysis. Aneurysm healing and fibrosis were measured by quantifying collagen according to the histological healing score by combining standard light microscopy and multiphoton imaging. We divided 27 rabbits into three groups: bare platinum group, fucoidan group, and dextran group as controls. RESULTS: Angiographic grading showed a trend toward less recanalization in the fucoidan group, although there were no significant differences among the three groups (P=0.21). Histological healing was significantly different according to the presence of more collagen in the neck area of aneurysms in the fucoidan group versus the bare platinum group (P=0.011), but not in the dextran group. Histological index was significantly better at the aneurysm neck in the fucoidan group than in the bare platinum group (P=0.004). Collagen organization index was also significantly better in the fucoidan group than in the bare platinum group (P=0.007). CONCLUSION: This proof-of-concept study demonstrated the feasibility and efficacy of treatment with fucoidan-coated coils to improve aneurysm healing. The results in this rabbit in vivo model showed that fucoidan-coated coils have the potential to improve healing following endovascular treatment.

2.
Langmuir ; 33(35): 8693-8699, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28648074

ABSTRACT

Boronic acid monolayers covalently bound to hydrogen-terminated Si(111) surfaces have been prepared from the UV-directed hydrosilylation reaction of 4-vinylbenzeneboronic acid. X-ray photoelectron spectroscopy (XPS) analysis of the modified surface revealed characteristic peaks from the attached organic molecule with the expected molecular composition and without the oxidation of underlying silicon. From XPS data, the surface coverage was estimated to be ca. 0.34 ± 0.04 ethylbenzene boronic acid chain per surface silicon atom (i.e., (4.4 ± 0.5) × 10-10 mol cm-2), which is consistent with a densely packed monolayer. The electrochemical impedance spectroscopy measurements performed at pH 7.4 in the presence of the Fe(CN)63-/Fe(CN)64- reporter couple showed specific dopamine-induced changes as a result of the binding of the guest molecule to the immobilized boronate species. The charge-transfer resistance (Rct) was found to decrease from 4.9 MΩ to 14 kΩ upon increasing the dopamine concentration in the range of 10 µM-1 mM. Furthermore, the presence of the interfering ascorbic acid until a concentration of 10 mM did not significantly change the electrochemical response of the functionalized surface. Comparative electrochemical data obtained at the reference ethylbenzene monolayer provided clear evidence that the immobilized boronic acid units were responsible for the observed changes.


Subject(s)
Boronic Acids/chemistry , Dopamine , Oxides , Photoelectron Spectroscopy , Silicon
3.
Sci Rep ; 6: 36708, 2016 11 18.
Article in English | MEDLINE | ID: mdl-27857192

ABSTRACT

The indium tin oxide (ITO) material has been widely used in various scientific fields and has been successfully implemented in several devices. Herein, the electrochemical reduction of ITO electrode in an organic electrolytic solution containing alkali metal, NaI, or redox molecule, N-(ferrocenylmethyl) imidazolium iodide, was investigated. The reduced ITO surfaces were investigated by X-ray photoelectron spectroscopy and grazing incident XRD demonstrating the presence of the electrolyte cation inside the material. Reversibility of this process after re-oxidation was evidenced by XPS. Using a redox molecule based ionic liquid as supporting electrolyte leads to fellow electrochemically the intercalation process. As a result, modified ITO containing ferrocenyl imidazolium was easily generated. This reduction process occurs at mild reducing potential around -1.8 V and causes for higher reducing potential a drastic morphological change accompanied with a decrease of the electrode conductivity at the macroscopic scale. Finally, the self-reducing power of the reduced ITO phase was used to initiate the spontaneous reduction of silver ions leading to the growth of Ag nanoparticles. As a result, transparent and multifunctional active ITO surfaces were generated bearing redox active molecules inside the material and Ag nanoparticles onto the surface.

4.
J Pharm Biomed Anal ; 123: 173-8, 2016 May 10.
Article in English | MEDLINE | ID: mdl-26907700

ABSTRACT

In clinical practice, rifampicin exposure is estimated from its concentration in venous blood samples. In this study, we hypothesized that differences in rifampicin concentration may exist between arterial and venous plasma. An HPLC-UV method for determining rifampicin concentration in plasma using rifapentine as an internal standard was validated. The method, which requires a simple protein precipitation procedure as sample preparation, was performed to compare venous and arterial plasma kinetics after a single therapeutic dose of rifampicin (8.6 mg/kg i.v, infused over 30 min) in baboons (n=3). The method was linear from 0.1 to 40 µg mL(-1) and all validation parameters fulfilled the international requirements. In baboons, rifampicin concentration in arterial plasma was higher than in venous plasma. Arterial Cmax was 2.1±0.2 fold higher than venous Cmax. The area under the curve (AUC) from 0 to 120 min was ∼80% higher in arterial plasma, indicating a significant arteriovenous concentration gradient in early rifampicin pharmacokinetics. Arterial and venous plasma concentrations obtained 6h after rifampicin injection were not different. An important arteriovenous equilibration delay for rifampicin pharmacokinetics is reported. Determination in venous plasma concentrations may considerably underestimate rifampicin exposure to organs during the distribution phase.


Subject(s)
Arteries/metabolism , Chromatography, High Pressure Liquid/methods , Plasma/chemistry , Rifampin/blood , Rifampin/chemistry , Spectrophotometry, Ultraviolet/methods , Veins/metabolism , Animals , Area Under Curve , Kinetics , Male , Papio , Reproducibility of Results , Rifampin/analogs & derivatives , Rifampin/pharmacokinetics
5.
Anal Chem ; 85(23): 11593-601, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24171668

ABSTRACT

The immobilization of dopamine, a neurotransmitter, onto macroelectrode and microelectrode surfaces has been performed following two strategies. The first consists of a one-step grafting based on electrochemical oxidation of an amino group in acidic media. The second is a stepwise process starting with electrochemical grafting of diazonium, leading to the attachment of aryl layer bearing an acidic headgroup, followed by chemical coupling leading to immobilized dopamine molecules onto the electrode surface. Electrochemical, infrared (IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses evidence that both methods are suitable for the immobilization of dopamine onto millimetric and micronic electrodes. The electrochemical responses of modified electrodes demonstrate that the electroactivity of the attached dopamine layer appears unaffected by the nature of the spacer, alkyl or aryl layers, suggesting that the communication, through tunneling, between the attached dopamine and the electrode is possible. More interestingly, the dopamine-modified electrode exhibits electron transfer activation toward dopamine in solution. As a result, not only does the dopamine modified electrode yield a fast electron transfer with lower ΔE(p) (30 mV) than the majority of pretreatment procedures but also the ΔE(p) is as small as that observed for more complex surface treatments.


Subject(s)
Dopamine/analysis , Dopamine/metabolism , Electrochemical Techniques/methods , Electrodes , Electron Transport , Photoelectron Spectroscopy/methods , Electron Transport/physiology , Oxidation-Reduction
7.
Chemphyschem ; 11(3): 670-82, 2010 Feb 22.
Article in English | MEDLINE | ID: mdl-20082401

ABSTRACT

Scanning electrochemical microscopy (SECM) allows investigation of the transport of redox probes within polymer brushes grown by atom-transfer radical polymerization (ATRP) from gold electrodes. By combination with cyclic voltammetry, the permeation of aqueous or organic redox probes is described and quantified in poly(glycidyl methacrylate) (PGMA) and polystyrene (PS). It is related to the chemical nature of both the probe and its environment (the solvent and the polymer phases). This study anticipates the permeation of reactive species within polymer brushes for further etching. The SECM reductive etching of the terminal C-Br bond of PGMA or PS macroinitiator layers is then investigated for different polymer thicknesses. The incomplete reductive etching of the macroinitiator layers is in agreement with the low permeability of the etchant within such polymer brushes and with the distribution of the terminal C-Br bonds throughout the brush. SECM proves to be a convenient tool for patterning such macroinitiator surfaces to form channels in block-copolymer structures. The combination of both analytical and patterning investigations enables one to anticipate and understand the reactivity of grafted macromolecules.


Subject(s)
Gold/chemistry , Polymethacrylic Acids/chemistry , Polystyrenes/chemistry , Water/chemistry , Microscopy, Electron, Scanning , Models, Molecular , Oxidation-Reduction
8.
Langmuir ; 24(13): 6595-602, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18533635

ABSTRACT

Multiwalled carbon nanotubes (MWNTs) covalently bound to monocrystalline p-type Si(111) surfaces have been prepared by attaching soluble amine-functionalized MWNTs onto a preassembled undecanoic acid monolayer using carbodiimide coupling. SEM analysis of these functionalized surfaces shows that the bound MWNTs are parallel to the surface rather than perpendicular. The voltammetric and electrochemical impedance spectroscopy measurements reveal that the electron transfer at the MWNT-modified surface is faster than that observed at a MWNT-free alkyl monolayer. We have also demonstrated that it is possible to prepare MWNT micropatterns using this surface amidation reaction and a "reagentless" UV photolithography technique. Following this approach, MWNT patterns surrounded by n-dodecyl areas have been produced and the local electrochemical properties of these micropatterned surfaces have been examined by scanning electrochemical microscopy. In particular, it is demonstrated that the MWNT patterns allow a faster charge transfer which is consistent with the results obtained for the uniformly modified surfaces.


Subject(s)
Nanotubes, Carbon/chemistry , Silicon/chemistry , Electrochemistry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Nanotubes, Carbon/ultrastructure , Surface Properties
9.
J Am Chem Soc ; 130(9): 2748-9, 2008 Mar 05.
Article in English | MEDLINE | ID: mdl-18257575

ABSTRACT

The redox activity of a ferrocenyl monolayer grafted on an n-type Si111 substrate was investigated by scanning electrochemical microscopy (SECM) in conditions where the substrate plays the role of an insulator. This approach permits the differentiation between the different possible electron-transfer and mass-transport pathways occurring at the interface. As an exciting result, the thin ferrocenyl monolayer behaves like a purely conducting material, highlighting very fast electron communication between immobilized ferrocenyl headgroups in a 2D-like charge-transport mechanism.


Subject(s)
Ferrous Compounds/chemistry , Electric Conductivity , Electrochemistry , Electrons , Kinetics , Metallocenes , Microscopy, Scanning Tunneling/methods , Surface Properties
10.
Anal Chem ; 78(17): 6019-25, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16944879

ABSTRACT

p-Si type electrodes modified with different organic monolayers were investigated by reaction with radical anion and cation electrogenerated at a microelectrode operating in the configuration of a scanning electrochemical microscope. The method proves to be a convenient tool for investigating both the quality and the redox properties of the layer as previously demonstrated on metallic electrodes especially when the sample cannot be electrically connected. Approach curves recorded with the different mediators were used to investigate the electron-transfer rates across alkyl monolayers bound to p-type silicon substrates. Preliminary results indicate that the interfacial electron transfer occurs via electron tunneling through the organic layer as generally described for SAMs grafted on gold electrodes.

11.
J Phys Chem B ; 110(13): 6848-55, 2006 Apr 06.
Article in English | MEDLINE | ID: mdl-16570994

ABSTRACT

Self-assembled ferrocene monolayers covalently bound to monocrystalline Si(111) surfaces have been prepared from the attachment of an amine-substituted ferrocene derivative to a pre-assembled acid-terminated alkyl monolayer using carbodiimide coupling. This derivatization strategy yielded nanometer-scale clean, densely packed monolayers, with the ferrocene units being more than 20 A from the semiconductor surface. The amount of immobilized electroactive units could be varied in the range 2 x 10(-11) to approximately 3.5 x 10(-10) mol cm(-2) by diluting the ferrocene-terminated chains by inert n-decyl chains. The highest coverage obtained for the single-component monolayer corresponded to 0.25-0.27 bound ferrocene per surface silicon atom. The electrochemical characteristics of the mixed n-decyl/ferrocene-terminated monolayers were found to not depend significantly on the surface coverage of ferrocene units. The reversible one-electron wave of the ferrocene/ferrocenium couple was observed at E degrees ' = 0.50 +/- 0.01 V vs SCE, and the rate constant of electron transfer kapp was about 50 s(-1).


Subject(s)
Ferrous Compounds/chemistry , Silicon/chemistry , Alkylation , Electrochemistry , Electrons , Metallocenes , Microscopy, Atomic Force , Molecular Structure
12.
Chem Commun (Camb) ; (43): 4536-8, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17283810

ABSTRACT

Sidewall functionalized multi-walled carbon nanotubes can be covalently bound parallel to a silicon surface via a self-assembled acid-terminated monolayer used as an organic molecular glue.


Subject(s)
Nanotubes, Carbon/chemistry , Silicon/chemistry , Oxidation-Reduction , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL