Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 172: 107693, 2023 02.
Article in English | MEDLINE | ID: mdl-36701835

ABSTRACT

Plastic pollution has long been identified as one of the biggest challenges of the 21st century. To tackle this problem, governments are setting stringent recycling targets to keep plastics in a closed loop. Yet, knowledge of the stocks and flows of plastic has not been well integrated into policies. This study presents a dynamic probabilistic economy-wide material flow analysis (MFA) of seven plastic polymers (HDPE, LDPE, PP, PS, PVC, EPS, and PET) in Norway from 2000 to 2050. A total of 40 individual product categories aggregated into nine industrial sectors were examined. An estimated 620 ± 23 kt or 114 kg/capita of these seven plastic polymers was put on the Norwegian market in 2020. Packaging products contributed to the largest share of plastic put on the market (∼40%). The accumulated in-use stock in 2020 was about 3400 ± 56 kt with ∼60% remaining in buildings and construction sector. In 2020, about 460 ± 22 kt of plastic waste was generated in Norway, with half originating from packaging. Although ∼50% of all plastic waste is collected separately from the waste stream, only around 25% is sorted for recycling. Overall, ∼50% of plastic waste is incinerated, ∼15% exported, and ∼10% landfilled. Under a business-as-usual scenario, the plastic put on the market, in-use stock, and waste generation will increase by 65%, 140%, and 90%, respectively by 2050. The outcomes of this work can be used as a guideline for other countries to establish the stocks and flows of plastic polymers from various industrial sectors which is needed for the implementation of necessary regulatory actions and circular strategies. The systematic classification of products suitable for recycling or be made of recyclate will facilitate the safe and sustainable recycling of plastic waste into new products, cap production, lower consumption, and prevent waste generation.


Subject(s)
Plastics , Waste Management , Norway , Product Packaging , Recycling , Environmental Pollution
2.
Environ Pollut ; 284: 117399, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34091260

ABSTRACT

Nanobiomaterials (NBMs) are a special category of nanomaterials used in medicine. As applications of NBMs are very similar to pharmaceuticals, their environmental release patterns are likely similar as well. Different pharmaceuticals were detected in surface waters all over the world. Consequently, there exists a need to identify possible NBM exposure routes into the environment. As the application of many NBMs is only carried out at specific locations (hospitals), average predicted environmental concentrations (PECs) may not accurately represent their release to the environment. We estimated the local release of poly(lactic-co-glycolic acid) (PLGA), which is investigated for their use in drug delivery, to Swiss surface waters by using population data as well as type, size and location of hospitals as proxies. The total mean consumption of PGLA in Switzerland using an explorative full-market penetration scenario was calculated to be 770 kg/year. 105 hospitals were considered, which were connected to wastewater treatment plants and the receiving water body using graphic information system (GIS) modelling. The water body dataset contained 20,167 river segments and 210 lake polygons. Using the discharge of the river, we were able to calculate the PECs in different river segments. While we calculated high PLGA releases of 2.24 and 2.03 kg/year in large cities such as Geneva or Zurich, the resulting local PECs of 220 and 660 pg/l, respectively, were low due to the high river discharge (330 and 97 m3/s). High PLGA concentrations (up to 7,900 pg/l) on the other hand were calculated around smaller cities with local hospitals but also smaller receiving rivers (between 0.7 and 1.9 m3/s). Therefore, we conclude that population density does not accurately predict local concentration hotspots of NBMs, such as PLGA, that are administered in a hospital context. In addition, even at the locations with the highest predicted PLGA concentrations, the expected risk is low.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Cities , Rivers , Switzerland , Water Pollutants, Chemical/analysis
3.
Environ Int ; 146: 106184, 2021 01.
Article in English | MEDLINE | ID: mdl-33137704

ABSTRACT

Nanobiomaterials (NBMs) are currently being tested in numerous biomedical applications, and their use is expected to grow rapidly in the near future. Many different types of nanomaterials are employed for a wide variety of different applications. Silver nanoparticles (nano-Ag) have been investigated for their antibacterial, antifungal, and osteoinductive properties to be used in catheters, wound healing, dental applications, and bone healing. Polymeric nanoparticles such as poly(lactic-co-glycolic acid) (PLGA) are mainly studied for their ability to deliver cancer drugs as the body metabolizes them into simple compounds. However, most of these applications are still in the development stage and unavailable on the market, meaning that information on possible consumption, material flows, and concentrations in the environment is lacking. We thus modeled a realistic scenario involving several nano-Ag and PLGA applications which are already in use or likely to reach the market soon. We assumed their full market penetration in Europe in order to explore the prospective flows of NBMs and their environmental concentrations. The potential flows of three application-specific composite materials were also examined for one precise application each: Fe3O4PEG-PLGA used in drug delivery, MgHA-collagen used for bone tissue engineering, and PLLA-Ag applied in wound healing. Mean annual consumption in Europe, considering all realistic and probable applications of the respective NBMs, was estimated to be 5,650 kg of nano-Ag and 48,000 kg of PLGA. Mean annual consumption of the three application-specific materials under the full market penetration scenario was estimated to be 4,000 kg of Fe3O4PEG-PLGA, 58 kg of MgHA-collagen, and 24,300 kg of PLLA-Ag. A probabilistic material-flow model was used to quantify flows of the NBMs studied from production, through use, and on to end-of-life in the environment. The highest possible worst-case predicted environmental concentration (wc-PEC) were found to occur in sewage sludge, with 0.2 µg/kg of nano-Ag, 400 µg/kg of PLGA, 33 µg/kg of Fe3O4PEG-PLGA, 0.007 µg/kg of MgHA-collagen, and 2.9 µg/kg of PLLA-Ag. PLGA exhibited the highest concentration in all environmental compartments except natural and urban soil, where nano-Ag showed the highest concentration. The results showed that the distribution of NBMs into different environmental and technical compartments is strongly dependent on their type of application.


Subject(s)
Metal Nanoparticles , Nanostructures , Europe , Prospective Studies , Silver
4.
Materials (Basel) ; 13(20)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066064

ABSTRACT

The convergence of nanotechnology and biotechnology has led to substantial advancements in nano-biomaterials (NBMs) used in medical devices (MD) and advanced therapy medicinal products (ATMP). However, there are concerns that applications of NBMs for medical diagnostics, therapeutics and regenerative medicine could also pose health and/or environmental risks since the current understanding of their safety is incomplete. A scientific strategy is therefore needed to assess all risks emerging along the life cycles of these products. To address this need, an overarching risk management framework (RMF) for NBMs used in MD and ATMP is presented in this paper, as a result of a collaborative effort of a team of experts within the EU Project BIORIMA and with relevant inputs from external stakeholders. The framework, in line with current regulatory requirements, is designed according to state-of-the-art approaches to risk assessment and management of both nanomaterials and biomaterials. The collection/generation of data for NBMs safety assessment is based on innovative integrated approaches to testing and assessment (IATA). The framework can support stakeholders (e.g., manufacturers, regulators, consultants) in systematically assessing not only patient safety but also occupational (including healthcare workers) and environmental risks along the life cycle of MD and ATMP. The outputs of the framework enable the user to identify suitable safe(r)-by-design alternatives and/or risk management measures and to compare the risks of NBMs to their (clinical) benefits, based on efficacy, quality and cost criteria, in order to inform robust risk management decision-making.

5.
J Nanobiotechnology ; 17(1): 56, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30992030

ABSTRACT

BACKGROUND: The increasing development and use of nanobiomaterials raises questions about their potential adverse effects on the environment after excretion and release. Published ecotoxicological data was searched for five polymeric nanobiomaterials [chitosan, polylactic acid (PLA), polyacrylonitrile (PAN), polyhydroxyalkanoates (PHA), and poly(lactic-glycolic acid) (PLGA)] and one inorganic nanobiomaterial [hydroxyapatite (HAP)] to evaluate the environmental hazards for freshwater and soil using a meta-analysis. If enough data was available, a probabilistic species sensitivity distribution (pSSD) and from this a predicted no effect concentration (PNEC) was calculated. If only one data point was available, a PNEC was calculated based on the most sensitive endpoint. Each material was classified either as "nano" or "non-nano", depending on the categorization in the original articles. When the original article specified that the material consisted of nanoparticles, the material was classified as nano; when nothing was mentioned, the material was classified as "non-nano". RESULTS: For PLA, PHA and PLGA, no published data on ecotoxicity was found and therefore no hazard assessment could be conducted. In soils, HAP was found to have the lowest PNEC with 0.3 mg/kg, followed by PAN and chitosan. In freshwater, chitosan was found to have the lowest PNEC with 5 µg/l, followed by nano-chitosan, HAP and PAN. CONCLUSION: Compared with other common pollutants, even the most sensitive of the selected nanobiomaterials, chitosan, is less toxic than engineered nanomaterials such as nano-ZnO and nano-Ag, some common antibiotics, heavy metals or organic pollutants such as triclosan. Given the current knowledge, the nanobiomaterials covered in this work therefore pose only little or no environmental hazard.


Subject(s)
Drug Carriers/chemistry , Drug Carriers/toxicity , Durapatite/toxicity , Hazardous Substances/toxicity , Nanostructures/toxicity , Polymers/toxicity , Biocompatible Materials/chemistry , Biocompatible Materials/toxicity , Drug Liberation , Durapatite/chemistry , Fresh Water/chemistry , Hazardous Substances/chemistry , Humans , Models, Statistical , Nanostructures/chemistry , Polymers/chemistry , Soil Pollutants/chemistry , Soil Pollutants/toxicity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
6.
Article in English | MEDLINE | ID: mdl-31921810

ABSTRACT

The growth in development and use of nanobiomaterials (NBMs) has raised questions regarding their possible distribution in the environment. Because most NBMs are not yet available on the market and exposure monitoring is thus not possible, prospective exposure modeling is the method of choice to get information on their future environmental exposure. An important input for such models is the fraction of the NBM excreted after their application to humans. The aim of this study was to analyze the current literature on excretion of NBMs using a meta-analysis. Published pharmacokinetic data from in vivo animal experiments was collected and compiled in a database, including information on the material characteristics. An evaluation of the data showed that there is no correlation between the excretion (in % of injected dose, ID) and the material type, the dose, the zeta potential or the size of the particles. However, the excretion is dependent on the type of administration with orally administered NBMs being excreted to a larger extent than intravenously administered ones. A statistically significant difference was found for IV vs. oral and oral vs. inhalation. The database provided by this work can be used for future studies to parameterize the transfer of NBMs from humans to wastewater. Generic probability distributions of excretion for oral and IV-administration are provided to enable excretion modeling of NBMs without data for a specific NBM.

SELECTION OF CITATIONS
SEARCH DETAIL