Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 80(3): 1645-1653, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37986260

ABSTRACT

BACKGROUND: Tolpyralate, a relatively new inhibitor of 4-hydroxyphenylpyruvate dioxygenase (HPPD), is registered for postemergence use in all types of corn (Zea mays L.) and has a record of excellent crop tolerance. A report of severe crop injury to sweet corn inbred (XSEN187) led to the following objectives: (i) determine whether sensitivity to tolpyralate in XSEN187 exists, and if confirmed, (ii) determine the genetic basis of tolpyralate sensitivity, and (iii) screen other corn germplasm for sensitivity to tolpyralate. RESULTS: Inbred XSEN187 was confirmed sensitive to tolpyralate. Inclusion of methylated seed oil or nonionic surfactant in the spray volume was necessary for severe crop injury. Tolpyralate sensitivity in XSEN187 is not conferred by alleles at Nsf1, a cytochrome P450-encoding gene (CYP81A9) conferring tolerance to many corn herbicides. Evidence suggests that tolpyralate sensitivity in XSEN187 is conferred by a single gene mapped to the Chr05: 283 240-1 222 909 bp interval. Moreover, tolpyralate sensitivity was observed in 48 other sweet corn and field corn inbreds. CONCLUSIONS: Severe sensitivity to tolpyralate exists in sweet corn and field corn germplasm when the herbicide is applied according to label directions. Whereas the corn response to several other herbicides, including HPPD-inhibitors, is conferred by the Nsf1 locus, corn sensitivity to tolpyralate is the result of a different locus. The use of tolpyralate should consider herbicide tolerance in inbred lines from which corn hybrids were derived, whereas alleles that render corn germplasm sensitive to tolpyralate should be eliminated from breeding populations, inbreds, and commercial cultivars. © 2023 Illinois Foundation Seeds, Inc and The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Herbicides , Humans , Zea mays/genetics , Herbicides/pharmacology , Plant Breeding , Illinois
2.
Pest Manag Sci ; 67(3): 258-61, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21308951

ABSTRACT

BACKGROUND: A population of waterhemp in a seed maize production field in central Illinois, United States, was not adequately controlled after post-emergence applications of herbicides that inhibit 4-hydroxyphenylpyruvate dioxygenase (HPPD). RESULTS: Progeny from the field population survived following treatment with mesotrione, tembotrione or topramezone applied to the foliage either alone or in combination with atrazine in greenhouse experiments. Dose-response experiments indicated that the level of resistance to the HPPD inhibitor mesotrione is at least tenfold relative to sensitive biotypes. CONCLUSION: These studies confirm that waterhemp has evolved resistance to HPPD-inhibiting herbicides.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , Amaranthus/drug effects , Cyclohexanones/pharmacology , Herbicides/pharmacology , Sulfones/pharmacology , Amaranthus/enzymology , Amaranthus/genetics , Atrazine/chemistry , Atrazine/pharmacology , Biological Evolution , Cyclohexanones/chemistry , Drug Resistance , Herbicides/chemistry , Illinois , Pyrazoles/chemistry , Pyrazoles/pharmacology , Sulfones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...