Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Prev Vet Med ; 184: 105129, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33002655

ABSTRACT

France recently faced two epizootic waves of highly pathogenic avian influenza (HPAI) in poultry (H5N6 in 2015-2016 and H5N8 in 2016-2017), mainly in the fattening duck production sector. Vaccination against avian influenza (AI) is currently not authorised in France even though its potential benefits were discussed during these epizootic events. The objective of this work was to evaluate the potential efficiency of different vaccination strategies that could be applied against AI in France. The EVACS tool, which is a decision support tool developed to evaluate vaccination strategies, was applied in several French poultry production sectors: broiler, layer, turkey, duck and guinea fowl. EVACS was used to simulate the performance of vaccination strategies in terms of vaccination coverage, immunity levels and spatial distribution of the immunity level. A cost-benefit analysis was then applied based on EVACS results to identify the most efficient strategy. For each sector, vaccination protocols were tested according to the production type (breeders/production, indoor/outdoor), the integration level (integrated/independent) and the type of vaccine (hatchery vaccination using a recombinant vaccine/farm vaccination using an inactivated vaccine). The most efficient protocols for each sector were then combined to test different overall vaccination strategies at the national level. Even if it was not possible to compare vaccination protocols with the two vaccines types in "foie gras" duck, meat duck and guinea fowl production sectors as no hatchery vaccine currently exist for these species, these production sectors were also described and included in this simulation. Both types of vaccination (at hatchery and farm level) enabled protective immunity levels for the control of AI, but higher poultry population immunity level was reached (including independent farms) using hatchery vaccination. We also showed that hatchery vaccination was more efficient (higher benefit-cost ratio) than farm vaccination. Sufficient and homogeneously spatially distributed protective levels were reached in the overall poultry population with vaccination strategies targeting breeders, chicken layers and broilers and turkeys, without the need to include ducks and guinea fowls. However, vaccination strategies involving the highest number of species and production types were the most efficient in terms of cost-benefit. This study provides critical information on the efficiency of different vaccination strategies to support future decision making in case vaccination was applied to prevent and control HPAI in France.


Subject(s)
Communicable Disease Control/methods , Decision Support Techniques , Disease Outbreaks/veterinary , Ducks , Galliformes , Influenza in Birds/prevention & control , Poultry Diseases/prevention & control , Vaccination/veterinary , Animals , Chickens , France/epidemiology , Influenza in Birds/epidemiology , Influenza in Birds/virology , Poultry Diseases/epidemiology , Poultry Diseases/virology , Turkeys
2.
PLoS One ; 15(3): e0230567, 2020.
Article in English | MEDLINE | ID: mdl-32196515

ABSTRACT

Poultry production has significantly increased worldwide, along with the number of avian influenza (AI) outbreaks and the potential threat for human pandemic emergence. The role of wild bird movements in this global spread has been extensively studied while the role of animal, human and fomite movement within commercial poultry production and trade networks remains poorly understood. The aim of this work is to better understand these roles in relation to the different routes of AI spread. A scoping literature review was conducted according to the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) using a search algorithm combining twelve domains linked to AI spread and animal/human movements within poultry production and trade networks. Only 28 out of 3,978 articles retrieved dealt especially with the role of animal, human and fomite movements in AI spread within the international trade network (4 articles), the national trade network (8 articles) and the production network (16 articles). While the role of animal movements in AI spread within national trade networks has been largely identified, human and fomite movements have been considered more at risk for AI spread within national production networks. However, the role of these movements has never been demonstrated with field data, and production networks have only been partially studied and never at international level. The complexity of poultry production networks and the limited access to production and trade data are important barriers to this knowledge. There is a need to study the role of animal and human movements within poultry production and trade networks in the global spread of AI in partnership with both public and private actors to fill this gap.


Subject(s)
Influenza in Birds/epidemiology , Poultry/virology , Animal Husbandry , Animals , Commerce , Humans , Influenza A virus/isolation & purification , Internationality , Poultry Products/virology
3.
PLoS One ; 14(1): e0210317, 2019.
Article in English | MEDLINE | ID: mdl-30682041

ABSTRACT

A simple method to estimate the size of the vaccine bank needed to control an epidemic of an exotic infectious disease in case of introduction into a country is presented. The method was applied to the case of a Lumpy Skin disease (LSD) epidemic in France. The size of the stock of vaccines needed was calculated based on a series of simple equations that use some trigonometric functions and take into account the spread of the disease, the time required to obtain good vaccination coverage and the cattle density in the affected region. Assuming a 7-weeks period to vaccinate all the animals and a spread of the disease of 7.3 km/week, the vaccination of 740 716 cattle would be enough to control an epidemic of LSD in France in 90% of the simulations (608 196 cattle would cover 75% of the simulations). The results of this simple method were then validated using a dynamic simulation model, which served as reference for the calculation of the vaccine stock required. The differences between both models in different scenarios, related with the time needed to vaccinate the animals, ranged from 7% to 10.5% more vaccines using the simple method to cover 90% of the simulations, and from 9.0% to 13.8% for 75% of the simulations. The model is easy to use and may be adapted for the control of different diseases in different countries, just by using some simple formulas and few input data.


Subject(s)
Lumpy Skin Disease/epidemiology , Lumpy Skin Disease/prevention & control , Viral Vaccines/administration & dosage , Animals , Cattle , Computer Simulation , Epidemics/prevention & control , Epidemics/veterinary , France/epidemiology , Lumpy skin disease virus/immunology , Vaccination/veterinary , Vaccination Coverage/statistics & numerical data
4.
Transbound Emerg Dis ; 66(2): 957-967, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30578746

ABSTRACT

The lumpy skin disease (LSD) virus belongs to the genus Capripoxvirus and causes a disease in cattle with economic impacts. In November 2014, the disease was first reported in Europe (in Cyprus); it was then reported in Greece (in August 2015) and has spread through different Balkan countries since 2016. Although vector transmission is predominant in at-risk areas, long-distance transmission usually occurs through movements of infected cattle. In order to estimate the threat for France, a quantitative import risk analysis (QIRA) model was developed to assess the risk of LSD being introduced into France by imports of cattle. Based on available information and using a stochastic model, the probability of a first outbreak of LSD in France following the import of batches of infected live cattle for breeding or fattening was estimated to be 5.4 × 10-4 (95% probability interval [PI]: 0.4 × 10-4 ; 28.7 × 10-4 ) in summer months (during high vector activity) and 1.8 × 10-4 (95% PI: 0.14 × 10-4 ; 15 × 10-4 ) in winter months. The development of a stochastic QIRA made it possible to quantify the risk of LSD being introduced into France through imports of live cattle. This tool is of prime importance because the LSD situation in the Balkans is continuously changing. Indeed, this model can be updated to process new information on the changing health situation in addition to new data from the TRAde Control and Expert System (TRACES, EU database). This model is easy to adapt to different countries and to other diseases.


Subject(s)
Communicable Diseases, Imported/veterinary , Disease Outbreaks/veterinary , Lumpy Skin Disease/epidemiology , Lumpy skin disease virus/physiology , Animals , Cattle , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/virology , France/epidemiology , Lumpy Skin Disease/virology , Probability , Risk Assessment , Stochastic Processes
5.
PLoS One ; 13(6): e0198506, 2018.
Article in English | MEDLINE | ID: mdl-29889905

ABSTRACT

BACKGROUND: The lumpy skin disease virus (LSDV) is a dsDNA virus belonging to the Poxviridae family and the Capripoxvirus genus. Lumpy skin diseases (LSD) is a highly contagious transboundary disease in cattle producing major economic losses. In 2014, the disease was first reported in the European Union (in Cyprus); it was then reported in 2015 (in Greece) and has spread through different Balkan countries in 2016. Indirect vector transmission is predominant at small distances, but transmission between distant herds and between countries usually occurs through movements of infected cattle or through vectors found mainly in animal trucks. METHODS AND PRINCIPAL FINDINGS: In order to estimate the threat for France due to the introduction of vectors found in animal trucks (cattle or horses) from at-risk countries (Balkans and neighbours), a quantitative import risk analysis (QIRA) model was developed according to the international standard. Using stochastic QIRA modelling and combining experimental/field data and expert opinion, the yearly risk of LSDV being introduced by stable flies (Stomoxys calcitrans), that travel in trucks transporting animals was between 6 x 10-5 and 5.93 x 10-3 with a median value of 89.9 x 10-5; it was mainly due to the risk related to insects entering farms in France from vehicles transporting cattle from the at-risk area. The risk related to the transport of cattle going to slaughterhouses or the transport of horses was much lower (between 2 x 10-7 and 3.73 x 10-5 and between 5 x 10-10 and 3.95 x 10-8 for cattle and horses, respectively). The disinsectisation of trucks transporting live animals was important to reduce this risk. CONCLUSION AND SIGNIFICANCE: The development of a stochastic QIRA made it possible to quantify the risk of LSD being introduced in France through the import of vectors that travel in trucks transporting animals. This tool is of prime importance because the LSD situation in the Balkans is continuously changing. Indeed, this model can be updated to process new information on vectors and the changing health situation, in addition to new data from the TRAde Control and Expert System (TRACES, EU database). This model is easy to adapt to different countries and to other vectors and diseases.


Subject(s)
Insect Vectors , Lumpy Skin Disease/transmission , Muscidae/virology , Animals , Capripoxvirus/physiology , Cattle , France , Horses , Lumpy Skin Disease/pathology , Lumpy Skin Disease/virology , Models, Theoretical , Motor Vehicles , Muscidae/physiology , Risk
SELECTION OF CITATIONS
SEARCH DETAIL
...