Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Sci Adv ; 10(19): eadm7515, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728394

ABSTRACT

The nonpolymorphic major histocompatibility complex E (MHC-E) molecule is up-regulated on many cancer cells, thus contributing to immune evasion by engaging inhibitory NKG2A/CD94 receptors on NK cells and tumor-infiltrating T cells. To investigate whether MHC-E expression by cancer cells can be targeted for MHC-E-restricted T cell control, we immunized rhesus macaques (RM) with rhesus cytomegalovirus (RhCMV) vectors genetically programmed to elicit MHC-E-restricted CD8+ T cells and to express established tumor-associated antigens (TAAs) including prostatic acidic phosphatase (PAP), Wilms tumor-1 protein, or Mesothelin. T cell responses to all three tumor antigens were comparable to viral antigen-specific responses with respect to frequency, duration, phenotype, epitope density, and MHC restriction. Thus, CMV-vectored cancer vaccines can bypass central tolerance by eliciting T cells to noncanonical epitopes. We further demonstrate that PAP-specific, MHC-E-restricted CD8+ T cells from RhCMV/PAP-immunized RM respond to PAP-expressing HLA-E+ prostate cancer cells, suggesting that the HLA-E/NKG2A immune checkpoint can be exploited for CD8+ T cell-based immunotherapies.


Subject(s)
Antigens, Neoplasm , CD8-Positive T-Lymphocytes , HLA-E Antigens , Histocompatibility Antigens Class I , Macaca mulatta , Animals , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Antigens, Neoplasm/immunology , Humans , Cancer Vaccines/immunology , Antigen Presentation/immunology , Cell Line, Tumor , Male , Cytomegalovirus/immunology , Mesothelin , Acid Phosphatase
2.
iScience ; 26(1): 105726, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36507220

ABSTRACT

Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity, and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month time frame. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both prefusion and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sublineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants.

3.
bioRxiv ; 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36203553

ABSTRACT

Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month timeframe. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both pre- and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sub-lineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly-reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants.

4.
Nature ; 602(7898): 664-670, 2022 02.
Article in English | MEDLINE | ID: mdl-35016195

ABSTRACT

The recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid substitutions in the spike protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody-based therapeutics. Here we show that the Omicron RBD binds to human ACE2 with enhanced affinity, relative to the Wuhan-Hu-1 RBD, and binds to mouse ACE2. Marked reductions in neutralizing activity were observed against Omicron compared to the ancestral pseudovirus in plasma from convalescent individuals and from individuals who had been vaccinated against SARS-CoV-2, but this loss was less pronounced after a third dose of vaccine. Most monoclonal antibodies that are directed against the receptor-binding motif lost in vitro neutralizing activity against Omicron, with only 3 out of 29 monoclonal antibodies retaining unaltered potency, including the ACE2-mimicking S2K146 antibody1. Furthermore, a fraction of broadly neutralizing sarbecovirus monoclonal antibodies neutralized Omicron through recognition of antigenic sites outside the receptor-binding motif, including sotrovimab2, S2X2593 and S2H974. The magnitude of Omicron-mediated immune evasion marks a major antigenic shift in SARS-CoV-2. Broadly neutralizing monoclonal antibodies that recognize RBD epitopes that are conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Antigenic Drift and Shift/immunology , Broadly Neutralizing Antibodies/immunology , Neutralization Tests , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antigenic Drift and Shift/genetics , COVID-19 Vaccines/immunology , Cell Line , Convalescence , Epitopes, B-Lymphocyte/immunology , Humans , Immune Evasion , Mice , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vesiculovirus/genetics
5.
bioRxiv ; 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34931194

ABSTRACT

The recently emerged SARS-CoV-2 Omicron variant harbors 37 amino acid substitutions in the spike (S) protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody therapeutics. Here, we show that the Omicron RBD binds to human ACE2 with enhanced affinity relative to the Wuhan-Hu-1 RBD and acquires binding to mouse ACE2. Severe reductions of plasma neutralizing activity were observed against Omicron compared to the ancestral pseudovirus for vaccinated and convalescent individuals. Most (26 out of 29) receptor-binding motif (RBM)-directed monoclonal antibodies (mAbs) lost in vitro neutralizing activity against Omicron, with only three mAbs, including the ACE2-mimicking S2K146 mAb 1 , retaining unaltered potency. Furthermore, a fraction of broadly neutralizing sarbecovirus mAbs recognizing antigenic sites outside the RBM, including sotrovimab 2 , S2X259 3 and S2H97 4 , neutralized Omicron. The magnitude of Omicron-mediated immune evasion and the acquisition of binding to mouse ACE2 mark a major SARS-CoV-2 mutational shift. Broadly neutralizing sarbecovirus mAbs recognizing epitopes conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.

6.
NPJ Vaccines ; 6(1): 113, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34489473

ABSTRACT

A successful HIV vaccine eliciting broadly neutralizing antibodies (bnAbs) must overcome the hurdle of being able to activate naive precursor B cells encoding features within their germline B cell receptors (BCR) that allow recognition of broadly neutralizing epitopes. Knowledge of whether bnAb precursor B cells are circulating at sufficient frequencies within individuals in communities heavily impacted by HIV may be important. Using a germline-targeting eOD-GT8 immunogen and high-throughput droplet-based single-cell BCR sequencing, we demonstrate that large numbers of paired BCR sequences from multiple donors can be efficiently screened to elucidate precursor frequencies of rare, naive VRC01-class B cells. Further, we analyzed IGHV1-2 allelic usage among three different cohorts; we find that IGHV1-2 alleles traditionally thought to be incompatible with VRC01-class responses are relatively common in various human populations and that germline variation within IGHV1-2 associates with gene usage frequencies in the naive BCR repertoire.

7.
Science ; 373(6559): 1109-1116, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34344823

ABSTRACT

The spillovers of betacoronaviruses in humans and the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlight the need for broad coronavirus countermeasures. We describe five monoclonal antibodies (mAbs) cross-reacting with the stem helix of multiple betacoronavirus spike glycoproteins isolated from COVID-19 convalescent individuals. Using structural and functional studies, we show that the mAb with the greatest breadth (S2P6) neutralizes pseudotyped viruses from three different subgenera through the inhibition of membrane fusion, and we delineate the molecular basis for its cross-reactivity. S2P6 reduces viral burden in hamsters challenged with SARS-CoV-2 through viral neutralization and Fc-mediated effector functions. Stem helix antibodies are rare, oftentimes of narrow specificity, and can acquire neutralization breadth through somatic mutations. These data provide a framework for structure-guided design of pan-betacoronavirus vaccines eliciting broad protection.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Virus Internalization , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , Convalescence , Cricetinae , Cross Reactions , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fc Fragments/immunology , Jurkat Cells , Lung/immunology , Membrane Fusion/immunology , Neutralization Tests , Peptide Mapping , Protein Conformation, alpha-Helical , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Viral Load/immunology
8.
PLoS Pathog ; 17(8): e1009736, 2021 08.
Article in English | MEDLINE | ID: mdl-34432859

ABSTRACT

The development of an effective human immunodeficiency virus (HIV-1) vaccine is a high global health priority. Soluble native-like HIV-1 envelope glycoprotein trimers (Env), including those based on the SOSIP design, have shown promise as vaccine candidates by inducing neutralizing antibody responses against the autologous virus in animal models. However, to overcome HIV-1's extreme diversity a vaccine needs to induce broadly neutralizing antibodies (bNAbs). Such bNAbs can protect non-human primates (NHPs) and humans from infection. The prototypic BG505 SOSIP.664 immunogen is based on the BG505 env sequence isolated from an HIV-1-infected infant from Kenya who developed a bNAb response. Studying bNAb development during natural HIV-1 infection can inform vaccine design, however, it is unclear to what extent vaccine-induced antibody responses to Env are comparable to those induced by natural infection. Here, we compared Env antibody responses in BG505 SOSIP-immunized NHPs with those in BG505 SHIV-infected NHPs, by analyzing monoclonal antibodies (mAbs). We observed three major differences between BG505 SOSIP immunization and BG505 SHIV infection. First, SHIV infection resulted in more clonal expansion and less antibody diversity compared to SOSIP immunization, likely because of higher and/or prolonged antigenic stimulation and increased antigen diversity during infection. Second, while we retrieved comparatively fewer neutralizing mAbs (NAbs) from SOSIP-immunized animals, these NAbs targeted more diverse epitopes compared to NAbs from SHIV-infected animals. However, none of the NAbs, either elicited by vaccination or infection, showed any breadth. Finally, SOSIP immunization elicited antibodies against the base of the trimer, while infection did not, consistent with the base being placed onto the virus membrane in the latter setting. Together these data provide new insights into the antibody response against BG505 Env during infection and immunization and limitations that need to be overcome to induce better responses after vaccination.


Subject(s)
AIDS Vaccines/administration & dosage , Antibodies, Neutralizing/immunology , Epitopes/immunology , HIV Infections/immunology , HIV-1/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibody Formation , Antigens, Viral/immunology , HIV Antibodies/immunology , HIV Infections/virology , Humans , Immunization , Infant , Kenya , Primates , Protein Multimerization , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , Vaccination
9.
Nature ; 597(7874): 103-108, 2021 09.
Article in English | MEDLINE | ID: mdl-34280951

ABSTRACT

The recent emergence of SARS-CoV-2 variants of concern1-10 and the recurrent spillovers of coronaviruses11,12 into the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here we describe a human monoclonal antibody designated S2X259, which recognizes a highly conserved cryptic epitope of the receptor-binding domain and cross-reacts with spikes from all clades of sarbecovirus. S2X259 broadly neutralizes spike-mediated cell entry of SARS-CoV-2, including variants of concern (B.1.1.7, B.1.351, P.1, and B.1.427/B.1.429), as well as a wide spectrum of human and potentially zoonotic sarbecoviruses through inhibition of angiotensin-converting enzyme 2 (ACE2) binding to the receptor-binding domain. Furthermore, deep-mutational scanning and in vitro escape selection experiments demonstrate that S2X259 possesses an escape profile that is limited to a single substitution, G504D. We show that prophylactic and therapeutic administration of S2X259 protects Syrian hamsters (Mesocricetus auratus) against challenge with the prototypic SARS-CoV-2 and the B.1.351 variant of concern, which suggests that this monoclonal antibody is a promising candidate for the prevention and treatment of emergent variants and zoonotic infections. Our data reveal a key antigenic site that is targeted by broadly neutralizing antibodies and will guide the design of vaccines that are effective against all sarbecoviruses.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , Broadly Neutralizing Antibodies/therapeutic use , COVID-19/prevention & control , SARS-CoV-2/classification , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , Broadly Neutralizing Antibodies/chemistry , COVID-19/immunology , COVID-19/virology , Cross Reactions/immunology , Disease Models, Animal , Female , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Mesocricetus/immunology , Mesocricetus/virology , Mutation , Neutralization Tests , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Viral Zoonoses/immunology , Viral Zoonoses/prevention & control , Viral Zoonoses/virology
10.
Nature ; 597(7874): 97-102, 2021 09.
Article in English | MEDLINE | ID: mdl-34261126

ABSTRACT

An ideal therapeutic anti-SARS-CoV-2 antibody would resist viral escape1-3, have activity against diverse sarbecoviruses4-7, and be highly protective through viral neutralization8-11 and effector functions12,13. Understanding how these properties relate to each other and vary across epitopes would aid the development of therapeutic antibodies and guide vaccine design. Here we comprehensively characterize escape, breadth and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD). Despite a trade-off between in vitro neutralization potency and breadth of sarbecovirus binding, we identify neutralizing antibodies with exceptional sarbecovirus breadth and a corresponding resistance to SARS-CoV-2 escape. One of these antibodies, S2H97, binds with high affinity across all sarbecovirus clades to a cryptic epitope and prophylactically protects hamsters from viral challenge. Antibodies that target the angiotensin-converting enzyme 2 (ACE2) receptor-binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency. Nevertheless, we also characterize a potent RBM antibody (S2E128) with breadth across sarbecoviruses related to SARS-CoV-2 and a high barrier to viral escape. These data highlight principles underlying variation in escape, breadth and potency among antibodies that target the RBD, and identify epitopes and features to prioritize for therapeutic development against the current and potential future pandemics.


Subject(s)
Broadly Neutralizing Antibodies/immunology , COVID-19/virology , Cross Reactions/immunology , Immune Evasion , SARS-CoV-2/classification , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibody Affinity , Broadly Neutralizing Antibodies/chemistry , COVID-19/immunology , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Cell Line , Cricetinae , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Female , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Male , Mesocricetus , Middle Aged , Models, Molecular , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccinology , COVID-19 Drug Treatment
11.
bioRxiv ; 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33851154

ABSTRACT

An ideal anti-SARS-CoV-2 antibody would resist viral escape 1-3 , have activity against diverse SARS-related coronaviruses 4-7 , and be highly protective through viral neutralization 8-11 and effector functions 12,13 . Understanding how these properties relate to each other and vary across epitopes would aid development of antibody therapeutics and guide vaccine design. Here, we comprehensively characterize escape, breadth, and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD), including S309 4 , the parental antibody of the late-stage clinical antibody VIR-7831. We observe a tradeoff between SARS-CoV-2 in vitro neutralization potency and breadth of binding across SARS-related coronaviruses. Nevertheless, we identify several neutralizing antibodies with exceptional breadth and resistance to escape, including a new antibody (S2H97) that binds with high affinity to all SARS-related coronavirus clades via a unique RBD epitope centered on residue E516. S2H97 and other escape-resistant antibodies have high binding affinity and target functionally constrained RBD residues. We find that antibodies targeting the ACE2 receptor binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency, but we identify one potent RBM antibody (S2E12) with breadth across sarbecoviruses closely related to SARS-CoV-2 and with a high barrier to viral escape. These data highlight functional diversity among antibodies targeting the RBD and identify epitopes and features to prioritize for antibody and vaccine development against the current and potential future pandemics.

12.
bioRxiv ; 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33851169

ABSTRACT

The recent emergence of SARS-CoV-2 variants of concern (VOC) and the recurrent spillovers of coronaviruses in the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here, we describe a human monoclonal antibody (mAb), designated S2X259, recognizing a highly conserved cryptic receptor-binding domain (RBD) epitope and cross-reacting with spikes from all sarbecovirus clades. S2X259 broadly neutralizes spike-mediated entry of SARS-CoV-2 including the B.1.1.7, B.1.351, P.1 and B.1.427/B.1.429 VOC, as well as a wide spectrum of human and zoonotic sarbecoviruses through inhibition of ACE2 binding to the RBD. Furthermore, deep-mutational scanning and in vitro escape selection experiments demonstrate that S2X259 possesses a remarkably high barrier to the emergence of resistance mutants. We show that prophylactic administration of S2X259 protects Syrian hamsters against challenges with the prototypic SARS-CoV-2 and the B.1.351 variant, suggesting this mAb is a promising candidate for the prevention and treatment of emergent VOC and zoonotic infections. Our data unveil a key antigenic site targeted by broadly-neutralizing antibodies and will guide the design of pan-sarbecovirus vaccines.

13.
Front Immunol ; 11: 580373, 2020.
Article in English | MEDLINE | ID: mdl-33250895

ABSTRACT

Conventional vaccine design has been based on trial-and-error approaches, which have been generally successful. However, there have been some major failures in vaccine development and we still do not have highly effective licensed vaccines for tuberculosis, HIV, respiratory syncytial virus, and other major infections of global significance. Approaches at rational vaccine design have been limited by our understanding of the immune response to vaccination at the molecular level. Tools now exist to undertake in-depth analysis using systems biology approaches, but to be fully realized, studies are required in humans with intensive blood and tissue sampling. Methods that support this intensive sampling need to be developed and validated as feasible. To this end, we describe here a detailed approach that was applied in a study of 15 healthy adults, who were immunized with hepatitis B vaccine. Sampling included ~350 mL of blood, 12 microbiome samples, and lymph node fine needle aspirates obtained over a ~7-month period, enabling comprehensive analysis of the immune response at the molecular level, including single cell and tissue sample analysis. Samples were collected for analysis of immune phenotyping, whole blood and single cell gene expression, proteomics, lipidomics, epigenetics, whole blood response to key immune stimuli, cytokine responses, in vitro T cell responses, antibody repertoire analysis and the microbiome. Data integration was undertaken using different approaches-NetworkAnalyst and DIABLO. Our results demonstrate that such intensive sampling studies are feasible in healthy adults, and data integration tools exist to analyze the vast amount of data generated from a multi-omics systems biology approach. This will provide the basis for a better understanding of vaccine-induced immunity and accelerate future rational vaccine design.


Subject(s)
Hepatitis B Vaccines/immunology , Hepatitis B virus/physiology , Hepatitis B/diagnosis , Monitoring, Immunologic/methods , Vaccination/methods , Adult , Aged , Aged, 80 and over , Female , Hepatitis B/immunology , Humans , Male , Middle Aged , Prospective Studies , Systems Biology , Treatment Outcome
14.
Science ; 370(6519): 950-957, 2020 11 20.
Article in English | MEDLINE | ID: mdl-32972994

ABSTRACT

Efficient therapeutic options are needed to control the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has caused more than 922,000 fatalities as of 13 September 2020. We report the isolation and characterization of two ultrapotent SARS-CoV-2 human neutralizing antibodies (S2E12 and S2M11) that protect hamsters against SARS-CoV-2 challenge. Cryo-electron microscopy structures show that S2E12 and S2M11 competitively block angiotensin-converting enzyme 2 (ACE2) attachment and that S2M11 also locks the spike in a closed conformation by recognition of a quaternary epitope spanning two adjacent receptor-binding domains. Antibody cocktails that include S2M11, S2E12, or the previously identified S309 antibody broadly neutralize a panel of circulating SARS-CoV-2 isolates and activate effector functions. Our results pave the way to implement antibody cocktails for prophylaxis or therapy, circumventing or limiting the emergence of viral escape mutants.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Amino Acid Motifs/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/administration & dosage , Antibodies, Viral/isolation & purification , CHO Cells , COVID-19 , Coronavirus Infections/therapy , Cricetinae , Cricetulus , Cryoelectron Microscopy , HEK293 Cells , Humans , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/immunology , Microscopy, Electron , Pneumonia, Viral/therapy , Protein Domains/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
15.
Cell ; 183(4): 1024-1042.e21, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32991844

ABSTRACT

Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics.


Subject(s)
Antibodies, Neutralizing/immunology , Epitope Mapping/methods , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/chemistry , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antigen-Antibody Reactions , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Epitopes/chemistry , Epitopes/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Kinetics , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protein Binding , Protein Domains/immunology , Protein Structure, Quaternary , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
16.
Proc Natl Acad Sci U S A ; 117(37): 22920-22931, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32873644

ABSTRACT

Animal models of human antigen-specific B cell receptors (BCRs) generally depend on "inferred germline" sequences, and thus their relationship to authentic naive human B cell BCR sequences and affinities is unclear. Here, BCR sequences from authentic naive human VRC01-class B cells from healthy human donors were selected for the generation of three BCR knockin mice. The BCRs span the physiological range of affinities found in humans, and use three different light chains (VK3-20, VK1-5, and VK1-33) found among subclasses of naive human VRC01-class B cells and HIV broadly neutralizing antibodies (bnAbs). The germline-targeting HIV immunogen eOD-GT8 60mer is currently in clinical trial as a candidate bnAb vaccine priming immunogen. To attempt to model human immune responses to the eOD-GT8 60mer, we tested each authentic naive human VRC01-class BCR mouse model under rare human physiological B cell precursor frequency conditions. B cells with high (HuGL18HL) or medium (HuGL17HL) affinity BCRs were primed, recruited to germinal centers, and they affinity matured, and formed memory B cells. Precursor frequency and affinity interdependently influenced responses. Taken together, these experiments utilizing authentic naive human VRC01-class BCRs validate a central tenet of germline-targeting vaccine design and extend the overall concept of the reverse vaccinology approach to vaccine development.


Subject(s)
Antibodies, Monoclonal/immunology , Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , Receptors, Antigen, B-Cell/immunology , AIDS Vaccines/immunology , Amino Acid Sequence/genetics , Animals , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/pharmacology , CD4 Antigens/immunology , Gene Knock-In Techniques/methods , Germinal Center/immunology , HIV Antigens , HIV Infections/immunology , HIV-1/immunology , Humans , Mice , Mice, Inbred Strains , Mice, Transgenic , Precursor Cells, B-Lymphoid/immunology , Vaccination/methods
17.
Nature ; 584(7821): 353-363, 2020 08.
Article in English | MEDLINE | ID: mdl-32659783

ABSTRACT

Antibody-dependent enhancement (ADE) of disease is a general concern for the development of vaccines and antibody therapies because the mechanisms that underlie antibody protection against any virus have a theoretical potential to amplify the infection or trigger harmful immunopathology. This possibility requires careful consideration at this critical point in the pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we review observations relevant to the risks of ADE of disease, and their potential implications for SARS-CoV-2 infection. At present, there are no known clinical findings, immunological assays or biomarkers that can differentiate any severe viral infection from immune-enhanced disease, whether by measuring antibodies, T cells or intrinsic host responses. In vitro systems and animal models do not predict the risk of ADE of disease, in part because protective and potentially detrimental antibody-mediated mechanisms are the same and designing animal models depends on understanding how antiviral host responses may become harmful in humans. The implications of our lack of knowledge are twofold. First, comprehensive studies are urgently needed to define clinical correlates of protective immunity against SARS-CoV-2. Second, because ADE of disease cannot be reliably predicted after either vaccination or treatment with antibodies-regardless of what virus is the causative agent-it will be essential to depend on careful analysis of safety in humans as immune interventions for COVID-19 move forward.


Subject(s)
Antibodies, Viral/adverse effects , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Animals , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Dengue Virus/immunology , Disease Models, Animal , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/immunology , Macaca mulatta , Mice , Middle East Respiratory Syndrome Coronavirus/immunology , Orthomyxoviridae/immunology , Pandemics , Rats , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Viral Vaccines/adverse effects , Viral Vaccines/immunology
18.
bioRxiv ; 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32511354

ABSTRACT

SARS-CoV-2 is a newly emerged coronavirus responsible for the current COVID-19 pandemic that has resulted in more than one million infections and 73,000 deaths 1,2 . Vaccine and therapeutic discovery efforts are paramount to curb the pandemic spread of this zoonotic virus. The SARS-CoV-2 spike (S) glycoprotein promotes entry into host cells and is the main target of neutralizing antibodies. Here we describe multiple monoclonal antibodies targeting SARS-CoV-2 S identified from memory B cells of a SARS survivor infected in 2003. One antibody, named S309, potently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2 by engaging the S receptor-binding domain. Using cryo-electron microscopy and binding assays, we show that S309 recognizes a glycan-containing epitope that is conserved within the sarbecovirus subgenus, without competing with receptor attachment. Antibody cocktails including S309 along with other antibodies identified here further enhanced SARS-CoV-2 neutralization and may limit the emergence of neutralization-escape mutants. These results pave the way for using S309 and S309-containing antibody cocktails for prophylaxis in individuals at high risk of exposure or as a post-exposure therapy to limit or treat severe disease.

19.
Sci Immunol ; 5(48)2020 06 19.
Article in English | MEDLINE | ID: mdl-32561559

ABSTRACT

A fundamental challenge in vaccinology is learning how to induce durable antibody responses. Live viral vaccines induce antibody responses that last a lifetime, but those induced with subunit vaccines wane rapidly. Studies in mice and humans have established that long-lived plasma cells (LLPCs) in the bone marrow (BM) are critical mediators of durable antibody responses. Here, we present data that adjuvanting an HIV-1 clade C 1086.C-derived gp140 immunogen (Env) with a novel synthetic Toll-like receptor (TLR)-7/8 agonist named 3M-052 formulated in poly(lactic-co-glycolic)acid or PLGA nanoparticles (NPs) or with alum, either alone or in combination with a TLR-4 agonist GLA, induces notably high and persistent (up to ~1 year) frequencies of Env-specific LLPCs in the BM and serum antibody responses in rhesus macaques. Up to 36 and 18% of Env-specific cells among total IgG-secreting BM-resident plasma cells were detected at peak and termination, respectively. In contrast, adjuvanting Env with alum or GLA in NP induced significantly lower (~<100-fold) LLPC and antibody responses. Immune responses induced by 3M-052 were also significantly higher than those induced by a combination of TLR-7/8 (R848) and TLR-4 (MPL) agonists. Adjuvanting Env with 3M-052 also induced robust activation of blood monocytes, strong plasmablast responses in blood, germinal center B cells, T follicular helper (TFH) cells, and persistent Env-specific plasma cells in draining lymph nodes. Overall, these results demonstrate efficacy of 3M-052 in promoting high magnitude and durability of antibody responses via robust stimulation of innate immunity and BM-resident LLPCs.


Subject(s)
Heterocyclic Compounds, 3-Ring/pharmacology , Immunity, Humoral/immunology , Macaca mulatta/immunology , Membrane Glycoproteins/agonists , Plasma Cells/drug effects , Stearic Acids/pharmacology , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , env Gene Products, Human Immunodeficiency Virus/immunology , Adjuvants, Immunologic , Animals , Female , Male , Membrane Glycoproteins/immunology , Plasma Cells/immunology , Toll-Like Receptor 7/immunology , Toll-Like Receptor 8/immunology
20.
Nature ; 583(7815): 290-295, 2020 07.
Article in English | MEDLINE | ID: mdl-32422645

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerged coronavirus that is responsible for the current pandemic of coronavirus disease 2019 (COVID-19), which has resulted in more than 3.7 million infections and 260,000 deaths as of 6 May 20201,2. Vaccine and therapeutic discovery efforts are paramount to curb the pandemic spread of this zoonotic virus. The SARS-CoV-2 spike (S) glycoprotein promotes entry into host cells and is the main target of neutralizing antibodies. Here we describe several monoclonal antibodies that target the S glycoprotein of SARS-CoV-2, which we identified from memory B cells of an individual who was infected with severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003. One antibody (named S309) potently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2, by engaging the receptor-binding domain of the S glycoprotein. Using cryo-electron microscopy and binding assays, we show that S309 recognizes an epitope containing a glycan that is conserved within the Sarbecovirus subgenus, without competing with receptor attachment. Antibody cocktails that include S309 in combination with other antibodies that we identified further enhanced SARS-CoV-2 neutralization, and may limit the emergence of neutralization-escape mutants. These results pave the way for using S309 and antibody cocktails containing S309 for prophylaxis in individuals at a high risk of exposure or as a post-exposure therapy to limit or treat severe disease.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , Cross Reactions/immunology , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/pharmacology , Antibody-Dependent Cell Cytotoxicity/drug effects , Antibody-Dependent Cell Cytotoxicity/immunology , B-Lymphocytes/immunology , Betacoronavirus/chemistry , Betacoronavirus/drug effects , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Coronavirus Infections/virology , Cross Reactions/drug effects , Cryoelectron Microscopy , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , HEK293 Cells , Humans , Immune Evasion/immunology , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/pharmacology , Immunologic Memory/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Models, Molecular , Neutralization Tests , Pandemics/prevention & control , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/drug effects , SARS-CoV-2 , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...