Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Cell Mol Gastroenterol Hepatol ; 16(1): 63-81, 2023.
Article in English | MEDLINE | ID: mdl-36965814

ABSTRACT

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is a model of a diverse spectrum of cancers because it is induced by well-known etiologies, mainly hepatitis C virus (HCV) and hepatitis B virus. Here, we aimed to identify HCV-specific mutational signatures and explored the link between the HCV-related regional variation in mutations rates and HCV-induced alterations in genome-wide chromatin organization. METHODS: To identify an HCV-specific mutational signature in HCC, we performed high-resolution targeted sequencing to detect passenger mutations on 64 HCC samples from 3 etiology groups: hepatitis B virus, HCV, or other. To explore the link between the genomic signature and genome-wide chromatin organization we performed chromatin immunoprecipitation sequencing for the transcriptionally permissive H3K4Me3, H3K9Ac, and suppressive H3K9Me3 modifications after HCV infection. RESULTS: Regional variation in mutation rate analysis showed significant etiology-dependent regional mutation rates in 12 genes: LRP2, KRT84, TMEM132B, DOCK2, DMD, INADL, JAK2, DNAH6, MTMR9, ATM, SLX4, and ARSD. We found an enrichment of C->T transversion mutations in the HCV-associated HCC cases. Furthermore, these cases showed regional variation in mutation rates associated with genomic intervals in which HCV infection dictated epigenetic alterations. This signature may be related to the HCV-induced decreased expression of genes encoding key enzymes in the base excision repair pathway. CONCLUSIONS: We identified novel distinct HCV etiology-dependent mutation signatures in HCC associated with HCV-induced alterations in histone modification. This study presents a link between cancer-causing mutagenesis and the increased predisposition to liver cancer in chronic HCV-infected individuals, and unveils novel etiology-specific mechanisms leading to HCC and cancer in general.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Liver Neoplasms , Humans , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , Hepatitis C/complications , Hepatitis C/genetics , Mutation/genetics , Hepacivirus/genetics , Hepatitis B virus/genetics , Epigenesis, Genetic/genetics , Chromatin , Genomics , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Keratins, Type II/genetics , Keratins, Hair-Specific/genetics
2.
Inflamm Regen ; 42(1): 52, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36447218

ABSTRACT

BACKGROUND: Different factors may lead to hepatitis. Among which are liver inflammation and poisoning. We chose two hepatitis models, typical for these two underlying causes. Thus, we aimed to characterize the role of protease-activated receptor 2 (Par2) in liver regeneration and inflammation to reconcile Par2 conflicting role in many damage models, which sometimes aggravates the induced damage and sometimes alleviates it. METHODS: WT and knockout (Par2KO) mice were injected with concanavalin A (ConA) to induce immune-mediated hepatitis or with carbon tetrachloride (CCl4) to elicit direct hepatic damage. To distinguish the immune component from the liver regenerative response, we conducted bone marrow (BM) replacements of WT and Par2KO mice and repeated the damage models. RESULTS: ConA injection caused limited damage in Par2KO mice livers, while in the WT mice severe damage followed by leukocyte infiltration was evident. Reciprocal BM replacement of WT and Par2KO showed that WT BM-reconstituted Par2KO mice displayed marked liver damage, while in Par2KO BM-reconstituted WT mice, the tissue was generally protected. In the CCl4 direct damage model, hepatocytes regenerated in WT mice, whereas Par2KO mice failed to recover. Reciprocal BM replacement did not show significant differences in hepatic regeneration. In Par2KO mice, hepatitis was more apparent, while WT recovered regardless of the BM origin. CONCLUSIONS: We conclude that Par2 activation in the immune system aggravates hepatitis and that Par2 activation in the damaged tissue promotes liver regeneration. When we incorporate this finding and revisit the literature reports, we reconciled the conflicts surrounding Par2's role in injury, recovery, and inflammation.

3.
J Perinat Med ; 49(9): 1071-1083, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34114389

ABSTRACT

OBJECTIVES: Preeclampsia is a dangerous pregnancy complication. The source of preeclampsia is unknown, though the placenta is believed to have a central role in its pathogenesis. An association between maternal infection and preeclampsia has been demonstrated, yet the involvement of the placental microbiome in the etiology of preeclampsia has not been determined. In this study, we examined whether preeclampsia is associated with an imbalanced microorganism composition in the placenta. METHODS: To this end, we developed a novel method for the identification of bacteria/viruses based on sequencing of small non-coding RNA, which increases the microorganism-to-host ratio, this being a major challenge in microbiome methods. We validated the method on various infected tissues and demonstrated its efficiency in detecting microorganisms in samples with extremely low bacterial/viral biomass. We then applied the method to placenta specimens from preeclamptic and healthy pregnancies. Since the placenta is a remarkably large and heterogeneous organ, we explored the bacterial and viral RNA at each of 15 distinct locations. RESULTS: Bacterial RNA was detected at all locations and was consistent with previous studies of the placental microbiome, though without significant differences between the preeclampsia and control groups. Nevertheless, the bacterial RNA composition differed significantly between various areas of the placenta. Viral RNA was detected in extremely low quantities, below the threshold of significance, thus viral abundance could not be determined. CONCLUSIONS: Our results suggest that the bacterial and viral abundance in the placenta may have only limited involvement in the pathogenesis of preeclampsia. The evidence of a heterogenic bacterial RNA composition in the various placental locations warrants further investigation to capture the true nature of the placental microbiome.


Subject(s)
Microbiota/genetics , Placenta/microbiology , Pre-Eclampsia , RNA, Bacterial , RNA, Viral , Sequence Analysis, RNA , Adult , Bacteria/classification , Bacteria/isolation & purification , Correlation of Data , Female , Humans , Outcome Assessment, Health Care , Placenta/pathology , Pre-Eclampsia/blood , Pre-Eclampsia/diagnosis , Pre-Eclampsia/microbiology , Pregnancy , RNA, Bacterial/analysis , RNA, Bacterial/isolation & purification , RNA, Untranslated/analysis , RNA, Untranslated/isolation & purification , RNA, Viral/analysis , RNA, Viral/isolation & purification , Reproducibility of Results , Sequence Analysis, RNA/methods , Sequence Analysis, RNA/statistics & numerical data , Specimen Handling/methods
4.
Prostate Cancer Prostatic Dis ; 24(4): 1167-1180, 2021 12.
Article in English | MEDLINE | ID: mdl-34108644

ABSTRACT

BACKGROUND: Recent publications have shown patients with defects in the DNA mismatch repair (MMR) pathway driven by either MSH2 or MSH6 loss experience a significant increase in the incidence of prostate cancer. Moreover, this increased incidence of prostate cancer is accompanied by rapid disease progression and poor clinical outcomes. METHODS AND RESULTS: We show that androgen-receptor activation, a key driver of prostate carcinogenesis, can disrupt the MSH2 gene in prostate cancer. We screened tumours from two cohorts (recurrent/non-recurrent) of prostate cancer patients to confirm the loss of MSH2 protein expression and identified decreased MSH2 expression in recurrent cases. Stratifying the independent TCGA prostate cancer cohort for MSH2/6 expression revealed that patients with lower levels of MSH2/6 had significant worse outcomes, in contrast, endometrial and colorectal cancer patients with lower MSH2/6 levels. MMRd endometrial and colorectal tumours showed the expected increase in mutational burden, microsatellite instability and enhanced immune cell mobilisation but this was not evident in prostate tumours. CONCLUSIONS: We have shown that loss or reduced levels of MSH2/MSH6 protein in prostate cancer is associated with poor outcome. However, our data indicate that this is not associated with a statistically significant increase in mutational burden, microsatellite instability or immune cell mobilisation in a cohort of primary prostate cancers.


Subject(s)
Colorectal Neoplasms/genetics , Endometrial Neoplasms/genetics , MutS Homolog 2 Protein/genetics , Prostatic Neoplasms/genetics , Colorectal Neoplasms/immunology , DNA Mismatch Repair , Endometrial Neoplasms/immunology , Female , Gene Rearrangement , Germ-Line Mutation , Humans , Male , Microsatellite Instability , Prostatic Neoplasms/immunology , Transcriptome , Tumor Cells, Cultured , Whole Genome Sequencing
5.
Nat Cancer ; 2(10): 1055-1070, 2021 10.
Article in English | MEDLINE | ID: mdl-35121883

ABSTRACT

Stochastic transition of cancer cells between drug-sensitive and drug-tolerant persister phenotypes has been proposed to play a key role in non-genetic resistance to therapy. Yet, we show here that cancer cells actually possess a highly stable inherited chance to persist (CTP) during therapy. This CTP is non-stochastic, determined pre-treatment and has a unimodal distribution ranging from 0 to almost 100%. Notably, CTP is drug specific. We found that differential serine/threonine phosphorylation of the insulin receptor substrate 1 (IRS1) protein determines the CTP of lung and of head and neck cancer cells under epidermal growth factor receptor inhibition, both in vitro and in vivo. Indeed, the first-in-class IRS1 inhibitor NT219 was highly synergistic with anti-epidermal growth factor receptor therapy across multiple in vitro and in vivo models. Elucidation of drug-specific mechanisms that determine the degree and stability of cellular CTP may establish a framework for the elimination of cancer persisters, using new rationally designed drug combinations.


Subject(s)
ErbB Receptors , Neoplasms , ErbB Receptors/genetics , Insulin Receptor Substrate Proteins/genetics , Phosphorylation , Probability
6.
J Card Surg ; 35(7): 1508-1513, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32485041

ABSTRACT

BACKGROUND: The aortic valve (AV) is the most commonly affected valve in valvular heart diseases (VHDs). The objective of the study is to identify microRNA (miRNA) molecules expressed in VHDs and the differential expression patterns of miRNA in AVs with either calcification or rheumatism etiologies. METHODS: Human AVs were collected during valve replacement surgery. RNA was extracted and miRNA containing libraries were prepared and sequenced using the next generation sequencing (NGS) approach. miRNAs identified as differentially expressed between the two etiologies were validated by quantitative real-time polymerase chain reaction (qPCR). The receiver operating characteristic (ROC) curve analysis was performed to examine the ability of relevant miRNA to differentiate between calcification and rheumatism etiologies. RESULTS: Rheumatic and calcified AV samples were prepared for the NGS and were successfully sequenced. The expression was validated by the qPCR approach in 46 AVs, 13 rheumatic, and 33 calcified AVs, confirming that miR-145-5p, miR-199a-5p, and miR-5701 were significantly higher in rheumatic AVs as compared with calcified AVs. ROC curve analysis revealed that miR-145-5p had a sensitivity of 76.92% and a specificity of 94.12%, area under the curve (AUC) = 0.88 (P = .0001), and miR-5701 had a sensitivity of 84.62% and a specificity of 76.47%, AUC = 0.78 (P = .0001), whereas miR-199a-5p had a sensitivity of 84.62%, and a specificity of 57.58%, AUC = 0.73 (P = .0083). CONCLUSION: We documented differential miRNA expression between AV disease etiologies. The miRNAs identified in this study advance our understanding of the mechanisms underlining AV disease.


Subject(s)
Aortic Valve/metabolism , Calcinosis/complications , Cardiomyopathies/complications , Gene Expression , Heart Valve Diseases/etiology , Heart Valve Diseases/genetics , MicroRNAs/analysis , MicroRNAs/genetics , Rheumatic Diseases/complications , Aged , Aortic Valve/surgery , Calcinosis/genetics , Cardiomyopathies/genetics , Female , Heart Valve Diseases/metabolism , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Rheumatic Diseases/genetics
7.
Cancers (Basel) ; 12(5)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365878

ABSTRACT

BACKGROUND: Breast cancer (BC) is a heterogeneous disease for which the commonly used chemotherapeutic agents primarily include the anthracyclines (doxorubicin, epirubicin), microtubule inhibitors (paclitaxel, docetaxel, eribulin), and alkylating agents (cyclophosphamide). While these drugs can be highly effective, metastatic tumours are frequently refractory to treatment or become resistant upon tumour relapse. METHODS: We undertook a cell polarity/epithelial mesenchymal plasticity (EMP)-enriched short hairpin RNA (shRNA) screen in MDA-MB-468 breast cancer cells to identify factors underpinning heterogeneous responses to three chemotherapeutic agents used clinically in breast cancer: Doxorubicin, docetaxel, and eribulin. shRNA-transduced cells were treated for 6 weeks with the EC10 of each drug, and shRNA representation assessed by deep sequencing. We first identified candidate genes with depleted shRNA, implying that their silencing could promote a response. Using the Broad Institute's Connectivity Map (CMap), we identified partner inhibitors targeting the identified gene families that may induce cell death in combination with doxorubicin, and tested them with all three drug treatments. RESULTS: In total, 259 shRNAs were depleted with doxorubicin treatment (at p < 0.01), 66 with docetaxel, and 25 with eribulin. Twenty-four depleted hairpins overlapped between doxorubicin and docetaxel, and shRNAs for TGFB2, RUNX1, CCDC80, and HYOU1 were depleted across all the three drug treatments. Inhibitors of MDM/TP53, TGFBR, and FGFR were identified by CMap as the top pharmaceutical perturbagens and we validated the combinatorial benefits of the TGFBR inhibitor (SB525334) and MDM inhibitor (RITA) with doxorubicin treatment, and also observed synergy between the inhibitor SB525334 and eribulin in MDA-MB-468 cells. CONCLUSIONS: Taken together, a cell polarity/EMP-enriched shRNA library screen identified relevant gene products that could be targeted alongside current chemotherapeutic agents for the treatment of invasive BC.

8.
ESC Heart Fail ; 7(3): 835-843, 2020 06.
Article in English | MEDLINE | ID: mdl-32253819

ABSTRACT

AIMS: The aims of the study are to assess the levels of coronary sinus (CS) miRNAs of systolic heart failure (HF) patients in samples obtained during cardiac resynchronization therapy (CRT) device implantation and compare them to the peripheral systemic venous miRNA expression. METHODS AND RESULTS: The cardiac specific miRNA levels were assessed in 60 patients, 39 HF patients with reduced ejection fraction and 21 control patients. The levels of four cardiac specified miRNAs (miR-21-5p, miR-92b-3p, miR-125b-5p, and miR-133a-3p) were compared between the peripheral samples of HF and controls and between peripheral venous in CS in the HF groups. Compared with controls, HF patients had higher peripheral serum venous levels of miR-125b-5p and miR-133-3p. In the HF group, the levels of expression were higher for miR-125b-5p and lower for miR-92, and miR-21-5p in the CS, compared with the peripheral venous circulation. CONCLUSIONS: The differences in miRNA expressions in CS compared with those in the periphery suggest that changes that may occur at the levels of the myocardial tissue in HF may be more relevant to our understanding of the biological linkage between miRNA expression and HF, than the traditional analysis of systemic serum miRNA expression.


Subject(s)
Cardiac Resynchronization Therapy , Coronary Sinus , Heart Failure, Systolic , MicroRNAs , Heart , Heart Failure, Systolic/diagnosis , Humans , MicroRNAs/genetics
9.
PLoS Genet ; 15(6): e1008181, 2019 06.
Article in English | MEDLINE | ID: mdl-31216276

ABSTRACT

The increasing worldwide prevalence of Hepatocellular carcinoma (HCC), characterized by resistance to conventional chemotherapy, poor prognosis and eventually mortality, place it as a prime target for new modes of prevention and treatment. Hepatitis C Virus (HCV) is the predominant risk factor for HCC in the US and Europe. Multiple epidemiological studies showed that sustained virological responses (SVR) following treatment with the powerful direct acting antivirals (DAAs), which have replaced interferon-based regimes, do not eliminate tumor development. We aimed to identify an HCV-specific pathogenic mechanism that persists post SVR following DAAs treatment. We demonstrate that HCV infection induces genome-wide epigenetic changes by performing chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) for histone post-translational modifications that are epigenetic markers for active and repressed chromatin. The changes in histone modifications correlate with reprogramed host gene expression and alter signaling pathways known to be associated with HCV life cycle and HCC. These epigenetic alterations require the presence of HCV RNA or/and expression of the viral proteins in the cells. Importantly, the epigenetic changes induced following infection persist as an "epigenetic signature" after virus eradication by DAAs treatment, as detected using in vitro HCV infection models. These observations led to the identification of an 8 gene signature that is associated with HCC development and demonstrate persistent epigenetic alterations in HCV infected and post SVR liver biopsy samples. The epigenetic signature was reverted in vitro by drugs that inhibit epigenetic modifying enzyme and by the EGFR inhibitor, Erlotinib. This epigenetic "scarring" of the genome, persisting following HCV eradication, suggest a novel mechanism for the persistent pathogenesis of HCV after its eradication by DAAs. Our study offers new avenues for prevention of the persistent oncogenic effects of chronic hepatitis infections using specific drugs to revert the epigenetic changes to the genome.


Subject(s)
Carcinoma, Hepatocellular/genetics , Epigenesis, Genetic/genetics , Hepacivirus/genetics , Hepatitis C/genetics , Liver Neoplasms/genetics , Aged , Antiviral Agents/administration & dosage , Biopsy , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Chromatin/genetics , Epigenesis, Genetic/drug effects , ErbB Receptors/antagonists & inhibitors , Erlotinib Hydrochloride , Female , Gene Expression Regulation, Neoplastic/drug effects , Hepacivirus/pathogenicity , Hepatitis C/drug therapy , Hepatitis C/pathology , Hepatitis C/virology , Histone Code/genetics , Histones/genetics , Host-Pathogen Interactions/genetics , Humans , Interferons/administration & dosage , Liver/drug effects , Liver/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/virology , Male , Middle Aged , Risk Factors , Signal Transduction/drug effects , Sustained Virologic Response
10.
Nucleic Acids Res ; 47(5): 2455-2471, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30698808

ABSTRACT

Hepatitis C virus (HCV) infection is the leading cause of chronic hepatitis, which often results in liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). HCV possesses an RNA genome and its replication is confined to the cytoplasm. Yet, infection with HCV leads to global changes in gene expression, and chromosomal instability (CIN) in the host cell. The mechanisms by which the cytoplasmic virus affects these nuclear processes are elusive. Here, we show that HCV modulates the function of the Structural Maintenance of Chromosome (SMC) protein complex, cohesin, which tethers remote regions of chromatin. We demonstrate that infection of hepatoma cells with HCV leads to up regulation of the expression of the RAD21 cohesin subunit and changes cohesin residency on the chromatin. These changes regulate the expression of genes associated with virus-induced pathways. Furthermore, siRNA downregulation of viral-induced RAD21 reduces HCV infection. During mitosis, HCV infection induces hypercondensation of chromosomes and the appearance of multi-centrosomes. We provide evidence that the underlying mechanism involves the viral NS3/4 protease and the cohesin regulator, WAPL. Altogether, our results provide the first evidence that HCV induces changes in gene expression and chromosome structure of infected cells by modulating cohesin.


Subject(s)
Carrier Proteins/genetics , Hepacivirus/genetics , Nuclear Proteins/genetics , Phosphoproteins/genetics , Proto-Oncogene Proteins/genetics , Serine Proteases/genetics , Viral Nonstructural Proteins/genetics , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Nucleus/virology , Chromatin/genetics , Chromosomal Instability/genetics , Chromosomal Proteins, Non-Histone/genetics , Cytoplasm/virology , DNA-Binding Proteins , Hepacivirus/pathogenicity , Hepatitis C/genetics , Hepatitis C/virology , Hepatocytes/virology , Host-Pathogen Interactions/genetics , Humans , Mitosis/genetics , Virus Replication/genetics , Cohesins
11.
PLoS One ; 12(3): e0172826, 2017.
Article in English | MEDLINE | ID: mdl-28282431

ABSTRACT

Interaction analysis of GWAS can detect signal that would be ignored by single variant analysis, yet few robust interactions in humans have been detected. Recent work has highlighted interactions in the MHC region between known HLA risk haplotypes for various autoimmune diseases. To better understand the genetic interactions underlying celiac disease (CD), we have conducted exhaustive genome-wide scans for pairwise interactions in five independent CD case-control studies, using a rapid model-free approach to examine over 500 billion SNP pairs in total. We found 14 independent interaction signals within the MHC region that achieved stringent replication criteria across multiple studies and were independent of known CD risk HLA haplotypes. The strongest independent CD interaction signal corresponded to genes in the HLA class III region, in particular PRRC2A and GPANK1/C6orf47, which are known to contain variants for non-Hodgkin's lymphoma and early menopause, co-morbidities of celiac disease. Replicable evidence for statistical interaction outside the MHC was not observed. Both within and between European populations, we observed striking consistency of two-locus models and model distribution. Within the UK population, models of CD based on both interactions and additive single-SNP effects increased explained CD variance by approximately 1% over those of single SNPs. The interactions signal detected across the five cohorts indicates the presence of novel associations in the MHC region that cannot be detected using additive models. Our findings have implications for the determination of genetic architecture and, by extension, the use of human genetics for validation of therapeutic targets.


Subject(s)
Celiac Disease/genetics , Major Histocompatibility Complex/genetics , Alleles , Area Under Curve , Case-Control Studies , Celiac Disease/immunology , Celiac Disease/pathology , Genome-Wide Association Study , Haplotypes , Humans , Linkage Disequilibrium , Lymphoma, Non-Hodgkin/genetics , Polymorphism, Single Nucleotide , Proteins/genetics , ROC Curve , Risk , Support Vector Machine
12.
BMC Cancer ; 15: 506, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26152113

ABSTRACT

BACKGROUND: While a number of studies have examined miRNA profiles across the molecular subtypes of breast cancer, it is unclear whether BRCA1 basal-like cancers have a specific miRNA profile. This study aims to compare grade independent miRNA expression in luminal cancers, sporadic and BRCA1 basal-type breast cancers. It also aims to ascertain an immunohistochemical profile regulated by BRCA1 specific miRNAs for potential diagnostic use. METHODS: miRNA expression was assessed in 11 BRCA1 basal, 16 sporadic basal, 17 luminal grade 3 cancers via microarrays. The expression of Cyclin D1, FOXP1, FIH-1, pan-ERß, NRP1 and CD99, predicted to be regulated by BRCA1 specific miRNAs by computer prediction algorithms, was assessed via immunohistochemistry in a cohort of 35 BRCA1 and 52 sporadic basal-like cancers. Assessment of cyclin D1, FOXP1, NRP1 and CD99 expression was repeated on a validation cohort of 82 BRCA1 and 65 sporadic basal-like breast cancers. RESULTS: Unsupervised clustering of basal cancers resulted in a "sporadic" cluster of 11 cancers, and a "BRCA1" cluster of 16 cancers, including a subgroup composed entirely of 10 BRCA1 cancers. Compared with sporadic basal cancers, BRCA1 cancers showed reduced positivity for proteins predicted to be regulated by miRNAs: FOXP1 (6/20[30 %] vs. 37/49[76 %], p < 0.001), cyclin D1 (8/22[36 %] vs. 30/46[65 %], p = 0.025), NRP1 (2/20[10 %] vs. 23/46[50 %], p = 0.002). This was confirmed in the validation cohort (all p < 0.001). Negative staining for 2 or more out of FOXP1, cyclin D1 and NRP1 predicts germline BRCA1 mutation with a sensitivity of 92 %, specificity of 44 %, positive predictive value of 38 % and a negative predictive value of 94 %. CONCLUSION: Sporadic and BRCA1 basal-like cancers have grade independent miRNA expression profiles. Furthermore miRNA driven differences in the expression of proteins in BRCA1 basal cancers may be detected via immunohistochemistry. These findings may have important diagnostic implications, as immunohistochemical assessment of basal cancers, in addition to the patient's family and clinical history, may potentially identify patients who may benefit from BRCA1 gene testing.


Subject(s)
Breast Neoplasms/genetics , Genes, BRCA1 , Genetic Association Studies , MicroRNAs/genetics , Mutation , Neoplasms, Basal Cell/genetics , Transcriptome , Biomarkers, Tumor , Breast Neoplasms/pathology , Cluster Analysis , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Immunohistochemistry , Neoplasm Grading , Neoplasms, Basal Cell/pathology , RNA Interference , RNA, Messenger/genetics
13.
Nat Commun ; 6: 6605, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25827447

ABSTRACT

Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones, even years after removal of the prostate. Analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.


Subject(s)
Adenocarcinoma/genetics , Bone Neoplasms/genetics , Brain Neoplasms/genetics , Prostatic Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Adenocarcinoma/secondary , Aged , Bone Neoplasms/secondary , Brain Neoplasms/secondary , DNA Copy Number Variations , Disease Progression , Humans , Longitudinal Studies , Male , Middle Aged , Mutation , Neoplasm Metastasis , Polymorphism, Single Nucleotide , Prostatic Neoplasms/pathology , RNA, Messenger , Sequence Analysis, DNA
14.
Genome Res ; 25(2): 201-12, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25452314

ABSTRACT

Mechanisms to coordinate programs of highly transcribed genes required for cellular homeostasis and growth are unclear. Upstream binding transcription factor (UBTF, also called UBF) is thought to function exclusively in RNA polymerase I (Pol I)-specific transcription of the ribosomal genes. Here, we report that the two isoforms of UBTF (UBTF1/2) are also enriched at highly expressed Pol II-transcribed genes throughout the mouse genome. Further analysis of UBTF1/2 DNA binding in immortalized human epithelial cells and their isogenically matched transformed counterparts reveals an additional repertoire of UBTF1/2-bound genes involved in the regulation of cell cycle checkpoints and DNA damage response. As proof of a functional role for UBTF1/2 in regulating Pol II transcription, we demonstrate that UBTF1/2 is required for recruiting Pol II to the highly transcribed histone gene clusters and for their optimal expression. Intriguingly, lack of UBTF1/2 does not affect chromatin marks or nucleosome density at histone genes. Instead, it results in increased accessibility of the histone promoters and transcribed regions to micrococcal nuclease, implicating UBTF1/2 in mediating DNA accessibility. Unexpectedly, UBTF2, which does not function in Pol I transcription, is sufficient to regulate histone gene expression in the absence of UBTF1. Moreover, depletion of UBTF1/2 and subsequent reduction in histone gene expression is associated with DNA damage and genomic instability independent of Pol I transcription. Thus, we have uncovered a novel role for UBTF1 and UBTF2 in maintaining genome stability through coordinating the expression of highly transcribed Pol I (UBTF1 activity) and Pol II genes (UBTF2 activity).


Subject(s)
Gene Expression Regulation , Genomic Instability , Pol1 Transcription Initiation Complex Proteins/metabolism , RNA Polymerase II/genetics , RNA Polymerase I/genetics , Transcription, Genetic , Animals , Binding Sites , Cell Line, Transformed , Chromatin/metabolism , Chromatin Immunoprecipitation , Computational Biology , DNA Damage , Gene Knockdown Techniques , High-Throughput Nucleotide Sequencing , Histones/genetics , Humans , Mice , Multigene Family , NIH 3T3 Cells , Nucleosomes/metabolism , Pol1 Transcription Initiation Complex Proteins/genetics , Protein Binding , Transcription Initiation Site
15.
Clin Cancer Res ; 20(21): 5547-57, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-24771644

ABSTRACT

PURPOSE: It has been recognized for almost a decade that concentrations of signaling androgens sufficient to activate the androgen receptor are present in castration-resistant prostate cancer tissue. The source of these androgens is highly controversial, with three competing models proposed. We, therefore, wished to determine the androgenic potential of human benign and malignant (hormone-naïve and treated) prostate tissue when incubated with various precursors and examine concomitant changes in enzyme expression. EXPERIMENTAL DESIGN: Freshly harvested prostate tissue [benign, hormone-naïve, and hormone-refractory prostate cancer (HRPC)] was incubated in excess concentrations of cholesterol, progesterone, DHEA, androstenedione, or testosterone for 96 hours, and steroid concentrations in the conditioned media measured by gas chromatography-mass spectroscopy. Changes in the expression of androgen synthetic and/or degradative enzymes were determined by expression microarray and qPCR. Significant changes were confirmed in an independent dataset. RESULTS: Of the precursor molecules tested, only incubation with androstenedione gave rise to significant concentrations of signaling androgens. Although this was observed in all tissue types, it occurred to a significantly greater degree in hormone-refractory compared with hormone-naïve cancer. Consistent with this, gene set enrichment analysis of the expression microarray data revealed significant upregulation of 17HSD17B activity, with overexpression of the canonical enzyme AKR1C3 confirmed by qPCR in the same samples and in a publicly available expression dataset. Importantly, we found no evidence to support a significant contribution from either the "backdoor" or "5-α dione" pathway. CONCLUSIONS: Reduction of androstenedione to testosterone by the canonical HSD17B AKR1C3 is the predominant source of signaling androgens in HRPC.


Subject(s)
Androgens/metabolism , Androstenedione/metabolism , Prostatic Neoplasms/metabolism , 3-Hydroxysteroid Dehydrogenases/metabolism , Aged , Aged, 80 and over , Aldo-Keto Reductase Family 1 Member C3 , Estradiol Dehydrogenases/metabolism , Humans , Hydroxyprostaglandin Dehydrogenases/metabolism , Male , Middle Aged , Prostate/metabolism , Receptors, Androgen/metabolism , Signal Transduction/physiology , Up-Regulation/physiology
16.
Genome Res ; 24(8): 1271-84, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24732587

ABSTRACT

HDAC inhibitors can regulate gene expression by post-translational modification of histone as well as nonhistone proteins. Often studied at single loci, increased histone acetylation is the paradigmatic mechanism of action. However, little is known of the extent of genome-wide changes in cells stimulated by the hydroxamic acids, TSA and SAHA. In this article, we map vascular chromatin modifications including histone H3 acetylation of lysine 9 and 14 (H3K9/14ac) using chromatin immunoprecipitation (ChIP) coupled with massive parallel sequencing (ChIP-seq). Since acetylation-mediated gene expression is often associated with modification of other lysine residues, we also examined H3K4me3 and H3K9me3 as well as changes in CpG methylation (CpG-seq). RNA sequencing indicates the differential expression of ∼30% of genes, with almost equal numbers being up- and down-regulated. We observed broad deacetylation and gene expression changes conferred by TSA and SAHA mediated by the loss of EP300/CREBBP binding at multiple gene promoters. This study provides an important framework for HDAC inhibitor function in vascular biology and a comprehensive description of genome-wide deacetylation by pharmacological HDAC inhibition.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Histones/metabolism , Hydroxamic Acids/pharmacology , Protein Processing, Post-Translational/drug effects , Acetylation , Animals , Anti-Inflammatory Agents/pharmacology , Aorta/cytology , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Gene Expression Regulation/drug effects , Genome, Human , Humans , Male , Mice, Inbred C57BL , Promoter Regions, Genetic , Protein Binding , Transcription Factors/metabolism , Transcriptome , Vorinostat
17.
PLoS One ; 9(3): e88950, 2014.
Article in English | MEDLINE | ID: mdl-24658684

ABSTRACT

Tumor invasion and metastasis involves complex remodeling of gene expression programs governing epithelial homeostasis. Mutational activation of the RAS-ERK is a frequent occurrence in many cancers and has been shown to drive overexpression of the AP-1 family transcription factor FRA1, a potent regulator of migration and invasion in a variety of tumor cell types. However, the nature of FRA1 transcriptional targets and the molecular pathways through which they promote tumor progression remain poorly understood. We found that FRA1 was strongly expressed in tumor cells at the invasive front of human colorectal cancers (CRCs), and that its depletion suppressed mesenchymal-like features in CRC cells in vitro. Genome-wide analysis of FRA1 chromatin occupancy and transcriptional regulation identified epithelial-mesenchymal transition (EMT)-related genes as a major class of direct FRA1 targets in CRC cells. Expression of the pro-mesenchymal subset of these genes predicted adverse outcomes in CRC patients, and involved FRA-1-dependent regulation and cooperation with TGFß signaling pathway. Our findings reveal an unexpectedly widespread and direct role for FRA1 in control of epithelial-mesenchymal plasticity in CRC cells, and suggest that FRA1 plays an important role in mediating cross talk between oncogenic RAS-ERK and TGFß signaling networks during tumor progression.


Subject(s)
Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Colorectal Neoplasms/genetics , Humans , Neoplasm Invasiveness/genetics , Proto-Oncogene Proteins c-fos , Signal Transduction , Transforming Growth Factor beta/metabolism
18.
Clin Cancer Res ; 20(10): 2761-72, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24658156

ABSTRACT

PURPOSE: Gene-expression profiling has revolutionized the way we think about cancer and confers the ability to observe the synchronous expression of thousands of genes. The use of putative genome-level expression profiles has allowed biologists to observe the complex interactions of genes that constitute recognized biologic pathways. We used gastric and ovarian datasets to identify gene-expression signatures and determine any functional significance. EXPERIMENTAL DESIGN: Microarray data of 94-tumor and 45-benign samples derived from patients with gastric cancer were interrogated using Hierarchical Ordered Partitioning and Collapsing Hybrid analysis identifying clusters of coexpressed genes. Clusters were further characterized with respect to biologic significance, gene ontology, and ability to discriminate between normal and tumor tissue. Tumor tissues were separated into epithelial and stromal compartments and immunohistochemical analysis performed to further elucidate specific cell lineages expressing genes contained in the signature. RESULTS: We identified a "stromal-response" expression signature, highly enriched for inflammatory, extracellular matrix, cytokine, and growth factor proteins. The majority of genes in the signature are expressed in the tumor-associated stroma but were absent in associated premalignant conditions. In gastric cancer, this module almost perfectly differentiates tumor from nonmalignant gastric tissue and hence can be regarded as a highly tumor-specific gene-expression signature. CONCLUSIONS: We show that these genes are consistently coexpressed across a range of independent gastric datasets as well as other cancer types suggesting a conserved functional role in cancer. In addition, we show that this signature can be a surrogate marker for M2 macrophage activity and has significant prognostic implications in gastric and ovarian high-grade serous cancer.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Macrophages/metabolism , Ovarian Neoplasms/genetics , Stomach Neoplasms/genetics , Stromal Cells/metabolism , Adult , Aged , Aged, 80 and over , Cluster Analysis , Cohort Studies , Diagnosis, Differential , Female , Humans , Immunohistochemistry , In Situ Hybridization , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Osteonectin/genetics , Osteonectin/metabolism , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/metabolism , Prognosis , Reproducibility of Results , Sensitivity and Specificity , Stomach Neoplasms/diagnosis , Stomach Neoplasms/metabolism
19.
J Pers Med ; 4(4): 475-88, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25563458

ABSTRACT

Increasing efforts are being dedicated towards improving cancer care via personalized medicine. These efforts depend to a large degree on the availability of a knowledge foundation. Unfortunately, existing knowledge linking cancer drugs and potential efficacy biomarkers is in its infancy; and where links are known, they are frequently unstructured and poorly documented. We have developed a new open-access knowledgebase for precision cancer medicine (the PCM Wiki and Knowledgebase). This knowledgebase was constructed using an innovative, two-pronged approach involving a structured knowledgebase at the back-end, and an intuitive knowledge-sharing interface and user-friendly query engine in front. The knowledgebase was seeded with several patient case reports and information was mined via text-mining and literature review by human curators. Using our novel Wiki-based platform to present and share knowledge stored in the PCM knowledgebase, users are able to suggest corrections, propose additions or point to errors in the knowledgebase. The result is a community-driven evolving knowledgebase holding integrated and consolidated knowledge of markers and indications for personalized cancer medicine. We suggest that the PCM Knowledgebase and Wiki could serve as an important tool for the advancement of clinical trials and care in the field of precision cancer medicine.

20.
Cell Stem Cell ; 13(1): 117-30, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23770079

ABSTRACT

Early full-term pregnancy is one of the most effective natural protections against breast cancer. To investigate this effect, we have characterized the global gene expression and epigenetic profiles of multiple cell types from normal breast tissue of nulliparous and parous women and carriers of BRCA1 or BRCA2 mutations. We found significant differences in CD44(+) progenitor cells, where the levels of many stem cell-related genes and pathways, including the cell-cycle regulator p27, are lower in parous women without BRCA1/BRCA2 mutations. We also noted a significant reduction in the frequency of CD44(+)p27(+) cells in parous women and showed, using explant cultures, that parity-related signaling pathways play a role in regulating the number of p27(+) cells and their proliferation. Our results suggest that pathways controlling p27(+) mammary epithelial cells and the numbers of these cells relate to breast cancer risk and can be explored for cancer risk assessment and prevention.


Subject(s)
Breast Neoplasms/etiology , Cell Lineage , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Gene Expression Profiling , Mammary Glands, Human/cytology , Parity/genetics , Stem Cells/cytology , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Biomarkers/metabolism , Blotting, Western , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p27/genetics , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Humans , Immunoenzyme Techniques , Mammary Glands, Human/metabolism , Mutation/genetics , Oligonucleotide Array Sequence Analysis , Pregnancy , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Stem Cells/metabolism , Stromal Cells/cytology , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...