Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35162996

ABSTRACT

Fluorescent carbon dots (CDs) are potential tools for the labeling of cells with many advantages such as photostability, multicolor emission, small size, rapid uptake, biocompatibility, and easy preparation. Affinity towards organelles can be influenced by the surface properties of CDs which affect the interaction with the cell and cytoplasmic distribution. Organelle targeting by carbon dots is promising for anticancer treatment; thus, intracellular trafficking and cytotoxicity of cationic CDs was investigated. Based on our previous study, we used quaternized carbon dots (QCDs) for treatment and monitoring the behavior of two human cancer cell MCF-7 and HeLa lines. We found similarities between human cancer cells and mouse fibroblasts in the case of QCDs uptake. Time lapse microscopy of QCDs-labeled MCF-7 cells showed that cells are dying during the first two hours, faster at lower doses than at higher ones. QCDs at a concentration of 100 µg/mL entered into the nucleus before cellular death; however, at a dose of 200 µg/mL, blebbing of the cellular membrane occurred, with a subsequent penetration of QCDs into the nuclear area. In the case of HeLa cells, the dose-depended effect did not happen; however, the labeled cells were also dying in mitosis and genotoxicity occurred nearly at all doses. Moreover, contrasted intracellular compartments, probably mitochondria, were obvious after 24 h incubation with 100 µg/mL of QCDs. The levels of reactive oxygen species (ROS) slightly increased after 24 h, depending on the concentration, thus the genotoxicity was likely evoked by the nanomaterial. A decrease in viability did not reach IC 50 as the DNA damage was probably partly repaired in the prolonged G0/G1 phase of the cell cycle. Thus, the defects in the G2/M phase may have allowed a damaged cell to enter mitosis and undergo apoptosis. The anticancer effect in both cell lines was manifested mainly through genotoxicity.


Subject(s)
Carbon/pharmacokinetics , Fibroblasts/cytology , Neoplasms/metabolism , Quantum Dots/chemistry , Reactive Oxygen Species/metabolism , Time-Lapse Imaging/methods , Animals , Biological Transport , Carbon/chemistry , Carbon/pharmacology , Cell Line , Cell Proliferation , Cell Survival/drug effects , DNA Damage , Fibroblasts/drug effects , Fibroblasts/metabolism , G2 Phase Cell Cycle Checkpoints/drug effects , HeLa Cells , Humans , MCF-7 Cells , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Optical Imaging
2.
Int J Mol Sci ; 22(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070594

ABSTRACT

It is important to understand the nanomaterials intracellular trafficking and distribution and investigate their targeting into the nuclear area in the living cells. In our previous study, we firstly observed penetration of nonmodified positively charged carbon dots decorated with quaternary ammonium groups (QCDs) into the nucleus of mouse NIH/3T3 fibroblasts. Thus, in this work, we focused on deeper study of QCDs distribution inside two healthy mouse NIH/3T3 and L929 cell lines by fluorescence microspectroscopy and performed a comprehensive cytotoxic and DNA damage measurements. Real-time penetration of QCDs across the plasma cell membrane was recorded, concentration dependent uptake was determined and endocytic pathways were characterized. We found out that the QCDs concentration of 200 µg/mL is close to saturation and subsequently, NIH/3T3 had a different cell cycle profile, however, no significant changes in viability (not even in the case with QCDs in the nuclei) and DNA damage. In the case of L929, the presence of QCDs in the nucleus evoked a cellular death. Intranuclear environment of NIH/3T3 cells affected fluorescent properties of QCDs and evoked fluorescence blue shifts. Studying the intracellular interactions with CDs is essential for development of future applications such as DNA sensing, because CDs as DNA probes have not yet been developed.


Subject(s)
Carbon , Cell Cycle/drug effects , Cell Membrane/metabolism , Cell Nucleus/metabolism , Fibroblasts/metabolism , Quantum Dots , Animals , Carbon/chemistry , Carbon/pharmacology , Cell Survival/drug effects , Mice , Microscopy, Fluorescence , NIH 3T3 Cells , Quantum Dots/chemistry , Quantum Dots/therapeutic use
3.
Nat Commun ; 11(1): 6116, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33239646

ABSTRACT

This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1038/s41467-020-19968-3.

4.
Nat Commun ; 10(1): 2696, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31213608

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nanoscale ; 11(7): 3222-3228, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30706925

ABSTRACT

A broader and quantitative understanding of cell adhesion to two-dimensional carbon-based materials is needed to expand the applications of graphene and graphene oxide (GO) in tissue engineering, prosthetics, biosensing, detection of circulating cancer cells, and (photo)thermal therapy. We therefore studied the detachment kinetics of human cancer cells HeLa adhered on graphene, GO, and glass substrates using stagnation point flow on an impinging jet apparatus. HeLa cells detached easily from graphene at a force of 9.4 nN but adhered very strongly to GO. The presence of hydrophilic functional groups thus apparently enhanced the HeLa cells' adherence to the GO surface. On graphene, smaller HeLa cells adhered more strongly and detached later than cells with larger projected areas, but the opposite behavior was observed on GO. These findings reveal GO to be a suitable platform for detecting cells or establishing contacts, e.g. between graphene-based circuits/electrodes and tissues. Our experiments also show that the impinging jet method is a powerful tool for studying cellular detachment mechanisms and adhesion strength, and could therefore be very useful for investigating interactions between cells and graphene-based materials.


Subject(s)
Graphite/chemistry , Oxygen/chemistry , Cell Adhesion , HeLa Cells , Humans
6.
Eur Biophys J ; 46(5): 433-444, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27889810

ABSTRACT

In the last few years, magnetically labeled cells have been intensively explored, and non-invasive cell tracking and magnetic manipulation methods have been tested in preclinical studies focused on cell transplantation. For clinical applications, it is desirable to know the intracellular pathway of nanoparticles, which can predict their biocompatibility with cells and the long-term imaging properties of labeled cells. Here, we quantified labeling efficiency, localization, and fluorescence properties of Rhodamine derivatized superparamagnetic maghemite nanoparticles (SAMN-R) in mesenchymal stromal cells (MSC). We investigated the stability of SAMN-R in the intracellular space during a long culture (20 days). Analyses were based on advanced confocal microscopy accompanied by atomic absorption spectroscopy (AAS) and magnetic resonance imaging. SAMN-R displayed excellent cellular uptake (24 h of labeling), and no toxicity of SAMN-R labeling was found. 83% of SAMN-R nanoparticles were localized in lysosomes, only 4.8% were found in mitochondria, and no particles were localized in the nucleus. On the basis of the MSC fluorescence measurement every 6 days, we also quantified the continual decrease of SAMN-R fluorescence in the average single MSC during 18 days. An additional set of analyses showed that the intracellular SAMN-R signal decrease was minimally caused by fluorophore degradation or nanoparticles extraction from the cells, main reason is a cell division. The fluorescence of SAMN-R nanoparticles within the cells was detectable minimally for 20 days. These observations indicate that SAMN-R nanoparticles have a potential for application in transplantation medicine.


Subject(s)
Adipose Tissue/cytology , Magnetite Nanoparticles/chemistry , Mesenchymal Stem Cells/cytology , Molecular Imaging/methods , Molecular Probes/chemistry , Rhodamines/chemistry , Cell Survival , Dextrans/metabolism , Female , Humans , Intracellular Space/metabolism , Male , Mesenchymal Stem Cells/metabolism , Molecular Probes/metabolism , Spectrometry, Fluorescence
7.
Nat Commun ; 7: 12879, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27628898

ABSTRACT

Superparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability. Here we present a method for preparing air-stable superparamagnetic iron nanoparticles trapped between thermally reduced graphene oxide nanosheets and exhibiting ring-like or core-shell morphologies depending on iron concentration. Importantly, these hybrids show superparamagnetism at room temperature and retain it even at 5 K. The corrected saturation magnetization of 185 Am(2) kg(-1) is among the highest values reported for iron-based superparamagnets. The synthetic concept is generalized exploiting functional groups of graphene oxide to stabilize and entrap cobalt, nickel and gold nanoparticles, potentially opening doors for targeted delivery, magnetic separation and imaging applications.

8.
Colloids Surf B Biointerfaces ; 142: 392-399, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-26970828

ABSTRACT

Bacterial resistance to conventional antibiotics is currently one of the most important healthcare issues, and has serious negative impacts on medical practice. This study presents a potential solution to this problem, using the strong synergistic effects of antibiotics combined with silver nanoparticles (NPs). Silver NPs inhibit bacterial growth via a multilevel mode of antibacterial action at concentrations ranging from a few ppm to tens of ppm. Silver NPs strongly enhanced antibacterial activity against multiresistant, ß-lactamase and carbapenemase-producing Enterobacteriaceae when combined with the following antibiotics: cefotaxime, ceftazidime, meropenem, ciprofloxacin and gentamicin. All the antibiotics, when combined with silver NPs, showed enhanced antibacterial activity at concentrations far below the minimum inhibitory concentrations (tenths to hundredths of one ppm) of individual antibiotics and silver NPs. The enhanced activity of antibiotics combined with silver NPs, especially meropenem, was weaker against non-resistant bacteria than against resistant bacteria. The double disk synergy test showed that bacteria produced no ß-lactamase when treated with antibiotics combined with silver NPs. Low silver concentrations were required for effective enhancement of antibacterial activity against multiresistant bacteria. These low silver concentrations showed no cytotoxic effect towards mammalian cells, an important feature for potential medical applications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/drug effects , Klebsiella pneumoniae/drug effects , Metal Nanoparticles/toxicity , Silver/pharmacology , Cefotaxime/pharmacology , Ceftazidime/pharmacology , Ciprofloxacin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Drug Synergism , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/growth & development , Gene Expression , Gentamicins/pharmacology , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/growth & development , Meropenem , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Thienamycins/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism
9.
Int J Nanomedicine ; 10: 949-61, 2015.
Article in English | MEDLINE | ID: mdl-25673990

ABSTRACT

One of the promising strategies for improvement of cancer treatment is based on magnetic drug delivery systems, thus avoiding side effects of standard chemotherapies. Superparamagnetic iron oxide (SPIO) nanoparticles have ideal properties to become a targeted magnetic drug delivery contrast probes, named theranostics. We worked with SPIO condensed colloidal nanocrystal clusters (MagAlg) prepared through a new soft biomineralization route in the presence of alginate as the polymeric shell and loaded with doxorubicin (DOX). The aim of this work was to study the in vitro cytotoxicity of these new MagAlg-DOX systems on mouse fibroblast and breast carcinoma cell lines. For proper analysis and understanding of cell behavior after administration of MagAlg-DOX compared with free DOX, a complex set of in vitro tests, including production of reactive oxygen species, comet assay, cell cycle determination, gene expression, and cellular uptake, were utilized. It was found that the cytotoxic effect of MagAlg-DOX system is delayed compared to free DOX in both cell lines. This was attributed to the different mechanism of internalization of DOX and MagAlg-DOX into the cells, together with the fact that the drug is strongly bound on the drug nanocarriers. We discovered that nanoparticles can attenuate or even inhibit the effect of DOX, particularly in the tumor MCF7 cell line. This is a first comprehensive study on the cytotoxic effect of DOX-loaded SPIO compared with free DOX on healthy and cancer cell lines, as well as on the induced changes in gene expression.


Subject(s)
Antineoplastic Agents , Cell Survival/drug effects , Colloids , Doxorubicin , Magnetite Nanoparticles , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Colloids/chemistry , Colloids/toxicity , Doxorubicin/chemistry , Doxorubicin/toxicity , Humans , MCF-7 Cells , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/toxicity , Mice , NIH 3T3 Cells
10.
Molecules ; 21(1): E26, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26729075

ABSTRACT

The resistance of bacteria towards traditional antibiotics currently constitutes one of the most important health care issues with serious negative impacts in practice. Overcoming this issue can be achieved by using antibacterial agents with multimode antibacterial action. Silver nano-particles (AgNPs) are one of the well-known antibacterial substances showing such multimode antibacterial action. Therefore, AgNPs are suitable candidates for use in combinations with traditional antibiotics in order to improve their antibacterial action. In this work, a systematic study quantifying the synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus was performed. Employing the microdilution method as more suitable and reliable than the disc diffusion method, strong synergistic effects were shown for all tested antibiotics combined with AgNPs at very low concentrations of both antibiotics and AgNPs. No trends were observed for synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs, indicating non-specific synergistic effects. Moreover, a very low amount of silver is needed for effective antibacterial action of the antibiotics, which represents an important finding for potential medical applications due to the negligible cytotoxic effect of AgNPs towards human cells at these concentration levels.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Silver/chemistry , Animals , Cell Survival/drug effects , Drug Resistance, Bacterial/drug effects , Drug Synergism , Escherichia coli/drug effects , Mice , Microbial Sensitivity Tests , Molecular Structure , NIH 3T3 Cells , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
11.
Int J Nanomedicine ; 9: 5355-72, 2014.
Article in English | MEDLINE | ID: mdl-25484583

ABSTRACT

OBJECTIVE: Cell therapies have emerged as a promising approach in medicine. The basis of each therapy is the injection of 1-100×10(6) cells with regenerative potential into some part of the body. Mesenchymal stromal cells (MSCs) are the most used cell type in the cell therapy nowadays, but no gold standard for the labeling of the MSCs for magnetic resonance imaging (MRI) is available yet. This work evaluates our newly synthesized uncoated superparamagnetic maghemite nanoparticles (surface-active maghemite nanoparticles - SAMNs) as an MRI contrast intracellular probe usable in a clinical 1.5 T MRI system. METHODS: MSCs from rat and human donors were isolated, and then incubated at different concentrations (10-200 µg/mL) of SAMN maghemite nanoparticles for 48 hours. Viability, proliferation, and nanoparticle uptake efficiency were tested (using fluorescence microscopy, xCELLigence analysis, atomic absorption spectroscopy, and advanced microscopy techniques). Migration capacity, cluster of differentiation markers, effect of nanoparticles on long-term viability, contrast properties in MRI, and cocultivation of labeled cells with myocytes were also studied. RESULTS: SAMNs do not affect MSC viability if the concentration does not exceed 100 µg ferumoxide/mL, and this concentration does not alter their cell phenotype and long-term proliferation profile. After 48 hours of incubation, MSCs labeled with SAMNs show more than double the amount of iron per cell compared to Resovist-labeled cells, which correlates well with the better contrast properties of the SAMN cell sample in T2-weighted MRI. SAMN-labeled MSCs display strong adherence and excellent elasticity in a beating myocyte culture for a minimum of 7 days. CONCLUSION: Detailed in vitro tests and phantom tests on ex vivo tissue show that the new SAMNs are efficient MRI contrast agent probes with exclusive intracellular uptake and high biological safety.


Subject(s)
Cell Tracking/methods , Contrast Media/chemistry , Dextrans/chemistry , Magnetite Nanoparticles/chemistry , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Animals , Cell Physiological Phenomena/drug effects , Cells, Cultured , Contrast Media/pharmacokinetics , Contrast Media/toxicity , Dextrans/pharmacokinetics , Dextrans/toxicity , Humans , Magnetic Resonance Imaging , Magnetite Nanoparticles/toxicity , Mesenchymal Stem Cells/chemistry , Mesenchymal Stem Cells/cytology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...