Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
OMICS ; 20(4): 202-13, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27027327

ABSTRACT

Low selenium levels have been linked to a higher incidence of cancer and other diseases, including Keshan, Chagas, and Kashin-Beck, and insulin resistance. Additionally, muscle and cardiovascular disorders, immune dysfunction, cancer, neurological disorders, and endocrine function have been associated with mutations in genes encoding for selenoproteins. Selenium biology is complex, and a systems biology approach to study global metabolomics, genomics, and/or proteomics may provide important clues to examining selenium-responsive markers in circulation. In the current investigation, we applied a global proteomics approach on plasma samples collected from a previously conducted, double-blinded placebo controlled clinical study, where men were supplemented with selenized-yeast (Se-Yeast; 300 µg/day, 3.8 µmol/day) or placebo-yeast for 48 weeks. Proteomic analysis was performed by iTRAQ on 8 plasma samples from each arm at baseline and 48 weeks. A total of 161 plasma proteins were identified in both arms. Twenty-two proteins were significantly altered following Se-Yeast supplementation and thirteen proteins were significantly changed after placebo-yeast supplementation in healthy men. The differentially expressed proteins were involved in complement and coagulation pathways, immune functions, lipid metabolism, and insulin resistance. Reconstruction and analysis of protein-protein interaction network around selected proteins revealed several hub proteins. One of the interactions suggested by our analysis, PHLD-APOA4, which is involved in insulin resistance, was subsequently validated by Western blot analysis. Our systems approach illustrates a viable platform for investigating responsive proteomic profile in 'before and after' condition following Se-Yeast supplementation. The nature of proteins identified suggests that selenium may play an important role in complement and coagulation pathways, and insulin resistance.


Subject(s)
Blood Proteins/metabolism , Selenium/administration & dosage , Yeasts/metabolism , Double-Blind Method , Humans , Male , Placebos , Prospective Studies
2.
Biochim Biophys Acta ; 1853(5): 1087-95, 2015 May.
Article in English | MEDLINE | ID: mdl-25721765

ABSTRACT

Epidermal growth factor (EGF) receptor (EGFR) is the founding member of the ErbB family of growth factor receptors that modulate a complex network of intracellular signaling pathways controlling growth, proliferation, differentiation, and motility. Selenoprotein W (SEPW1) is a highly conserved, diet-regulated 9kDa thioredoxin-like protein required for normal cell cycle progression. We report here that SEPW1 is required for EGF-induced EGFR activation and that it functions by suppressing EGFR ubiquitination and receptor degradation. SEPW1 depletion inhibited EGF-dependent cell cycle entry in breast and prostate epithelial cells. In prostate cells, SEPW1 depletion decreased EGFR auto-phosphorylation, while SEPW1 overexpression increased EGFR auto-phosphorylation. SEPW1 depletion increased the rate of EGFR degradation, which decreased total and surface EGFR and suppressed EGF-dependent EGFR endocytosis, EGFR dimer formation, and activation of EGF-dependent pathways. EGFR ubiquitination was increased in SEPW1-depleted cells--in agreement with the increased rate of EGFR degradation, and suggests that SEPW1 suppresses EGFR ubiquitination. Ubiquitination-directed lysozomal degradation controls post-translational EGFR expression and is dysregulated in many cancers. Thus, suppression of EGFR ubiquitination by SEPW1 may be related to the putative increase in cancer risk associated with high selenium intakes. Knowledge of the mechanisms underlying SEPW1's regulation of EGFR ubiquitination may reveal new opportunities for nutritional cancer prevention or cancer drug development.


Subject(s)
Cell Membrane/metabolism , ErbB Receptors/metabolism , Proteolysis , Selenoprotein W/metabolism , Ubiquitination , Breast/cytology , Cell Cycle/drug effects , Cell Line , Cell Membrane/drug effects , Endocytosis/drug effects , Epidermal Growth Factor/pharmacology , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Gene Expression Regulation/drug effects , Gene Silencing/drug effects , Humans , Male , Phosphorylation/drug effects , Prostate/cytology , Protein Multimerization/drug effects , Proteolysis/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , Ubiquitination/drug effects
3.
J Nutr Biochem ; 18(4): 272-8, 2007 Apr.
Article in English | MEDLINE | ID: mdl-16860981

ABSTRACT

Ascorbic acid (AA) is an antioxidant that, in the presence of iron and hydrogen peroxide, increases the production of hydroxyl radicals in vitro. Whether AA has similar pro-oxidant properties in vivo may depend upon the relative balance of iron and AA concentrations. In this study, C3H mice were fed diets supplemented with 100 or 300 mg/kg iron, with or without AA (15 g/kg), for 12 months. Liver AA concentrations were greater in mice fed AA-supplemented diets with either low or high iron (P=.0001), while the high-iron diet was associated with a significantly lower liver AA concentration regardless of AA supplementation (P=.0001). Only mice fed the high-iron diet with AA had a significantly greater liver iron concentration (P=.05). In the high-iron group, AA reduced oxidative stress, as measured by greater activities of glutathione peroxidase, superoxide dismutase (SOD) and catalase and by significantly lower concentrations of 4-hydroxylalkenal (HAE) and malondialdehyde (MDA). In mice fed the low-iron diet, AA was associated with greater concentrations of HAE and MDA and with lower activities of SOD. However, AA did not increase the concentrations of modified DNA bases with the low-iron diet but was associated with significantly lower concentrations of modified DNA bases in mice fed the high-iron diet. In conclusion, dietary AA appears to have mild pro-oxidant properties at low-iron concentrations but has a strong antioxidant effect against oxidative stress and DNA damage induced by dietary iron in mouse liver.


Subject(s)
Ascorbic Acid/pharmacology , Iron, Dietary/administration & dosage , Oxidative Stress/drug effects , Aldehydes/metabolism , Animals , Ascorbic Acid/metabolism , DNA Damage/drug effects , Drug Synergism , Iron/metabolism , Lipid Peroxidation , Liver/drug effects , Liver/metabolism , Male , Malondialdehyde/metabolism , Mice , Mice, Inbred C3H , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...