Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Allergy Immunol ; 33(6): e13802, 2022 06.
Article in English | MEDLINE | ID: mdl-35754128

ABSTRACT

BACKGROUND: Asthma exacerbations are a serious public health concern due to high healthcare resource utilization, work/school productivity loss, impact on quality of life, and risk of mortality. The genetic basis of asthma exacerbations has been studied in several populations, but no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies (meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma exacerbations across diverse populations and to assess their functional role in regulating DNA methylation and gene expression. METHODS: A meta-GWAS of asthma exacerbations in 4989 Europeans, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. Suggestively associated variants (p ≤ 5 × 10-5 ) were assessed for replication in 36,477 European and 1078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 Hispanic/Latino and African American asthma patients and in publicly available databases. The effect on gene expression was evaluated in silico. RESULTS: One hundred and twenty-six independent variants were suggestively associated with asthma exacerbations in the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio (ORT allele ) = 0.82, p = 9.05 × 10-6 and replication: ORT allele  = 0.89, p = 5.35 × 10-3 ) and rs943126 from pantothenate kinase 1 (PANK1) (discovery: ORC allele  = 0.85, p = 3.10 × 10-5 and replication: ORC allele  = 0.89, p = 1.30 × 10-2 ). Both variants regulate gene expression of genes where they locate and DNA methylation levels of nearby genes in whole blood. CONCLUSIONS: This multi-ancestry study revealed novel suggestive regulatory loci for asthma exacerbations located in genomic regions participating in inflammation and host defense.


Subject(s)
Asthma , Genome-Wide Association Study , Asthma/genetics , Genetic Predisposition to Disease , Hispanic or Latino/genetics , Humans , Polymorphism, Single Nucleotide , Quality of Life
2.
PLoS One ; 9(5): e97510, 2014.
Article in English | MEDLINE | ID: mdl-24842322

ABSTRACT

Levels of omega-6 (n-6) and omega-3 (n-3), long chain polyunsaturated fatty acids (LcPUFAs) such as arachidonic acid (AA; 20:4, n-6), eicosapentaenoic acid (EPA; 20:5, n-3) and docosahexaenoic acid (DHA; 22:6, n-3) impact a wide range of biological activities, including immune signaling, inflammation, and brain development and function. Two desaturase steps (Δ6, encoded by FADS2 and Δ5, encoded by FADS1) are rate limiting in the conversion of dietary essential 18 carbon PUFAs (18C-PUFAs) such as LA (18:2, n-6) to AA and α-linolenic acid (ALA, 18:3, n-3) to EPA and DHA. GWAS and candidate gene studies have consistently identified genetic variants within FADS1 and FADS2 as determinants of desaturase efficiencies and levels of LcPUFAs in circulating, cellular and breast milk lipids. Importantly, these same variants are documented determinants of important cardiovascular disease risk factors (total, LDL, and HDL cholesterol, triglycerides, CRP and proinflammatory eicosanoids). FADS1 and FADS2 lie head-to-head (5' to 5') in a cluster configuration on chromosome 11 (11q12.2). There is considerable linkage disequilibrium (LD) in this region, where multiple SNPs display association with LcPUFA levels. For instance, rs174537, located ∼ 15 kb downstream of FADS1, is associated with both FADS1 desaturase activity and with circulating AA levels (p-value for AA levels = 5.95 × 10(-46)) in humans. To determine if DNA methylation variation impacts FADS activities, we performed genome-wide allele-specific methylation (ASM) with rs174537 in 144 human liver samples. This approach identified highly significant ASM with CpG sites between FADS1 and FADS2 in a putative enhancer signature region, leading to the hypothesis that the phenotypic associations of rs174537 are likely due to methylation differences. In support of this hypothesis, methylation levels of the most significant probe were strongly associated with FADS1 and, to a lesser degree, FADS2 activities.


Subject(s)
DNA Methylation/genetics , Fatty Acid Desaturases/genetics , Alleles , Delta-5 Fatty Acid Desaturase , Fatty Acids, Omega-6/metabolism , Humans , Linkage Disequilibrium/genetics , Liver/enzymology , Liver/metabolism , Polymorphism, Single Nucleotide , alpha-Linolenic Acid/metabolism
3.
Hum Mol Genet ; 22(24): 5065-74, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-23900078

ABSTRACT

DNA methylation is one of several epigenetic mechanisms that contribute to the regulation of gene expression; however, the extent to which methylation of CpG dinucleotides correlates with gene expression at the genome-wide level is still largely unknown. Using purified primary monocytes from subjects in a large community-based cohort (n = 1264), we characterized methylation (>485 000 CpG sites) and mRNA expression (>48K transcripts) and carried out genome-wide association analyses of 8370 expression phenotypes. We identified 11 203 potential cis-acting CpG loci whose degree of methylation was associated with gene expression (eMS) at a false discovery rate threshold of 0.001. Most of the associations were consistent in effect size and direction of effect across sex and three ethnicities. Contrary to expectation, these eMS were not predominately enriched in promoter regions, or CpG islands, but rather in the 3' UTR, gene bodies, CpG shores or 'offshore' sites, and both positive and negative correlations between methylation and expression were observed across all locations. eMS were enriched for regions predicted to be regulatory by ENCODE (Encyclopedia of DNA Elements) data in multiple cell types, particularly enhancers. One of the strongest association signals detected (P < 2.2 × 10(-308)) was a methylation probe (cg17005068) in the promoter/enhancer region of the glutathione S-transferase theta 1 gene (GSTT1, encoding the detoxification enzyme) with GSTT1 mRNA expression. Our study provides a detailed description of the epigenetic architecture in human monocytes and its relationship to gene expression. These data may help prioritize interrogation of biologically relevant methylation loci and provide new insights into the epigenetic basis of human health and diseases.


Subject(s)
DNA Methylation , Monocytes/metabolism , Transcriptome , Aged , Aged, 80 and over , Atherosclerosis/genetics , CpG Islands , Epigenesis, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation , Genome-Wide Association Study , Glutathione Transferase/genetics , Humans , Male , Middle Aged , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Regulatory Sequences, Nucleic Acid , Transcription Initiation Site
4.
Am J Respir Crit Care Med ; 187(1): 28-33, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23144325

ABSTRACT

RATIONALE: The function of the P2X(7) nucleotide receptor protects against exacerbation in people with mild-intermittent asthma during viral illnesses, but the impact of disease severity and maintenance therapy has not been studied. OBJECTIVES: To evaluate the association between P2X(7), asthma exacerbations, and incomplete symptom control in a more diverse population. METHODS: A matched P2RX7 genetic case-control was performed with samples from Asthma Clinical Research Network trial participants enrolled before July 2006, and P2X(7) pore activity was determined in whole blood samples as an ancillary study to two trials completed subsequently. MEASUREMENTS AND MAIN RESULTS: A total of 187 exacerbations were studied in 742 subjects, and the change in asthma symptom burden was studied in an additional 110 subjects during a trial of inhaled corticosteroids (ICS) dose optimization. African American carriers of the minor G allele of the rs2230911 loss-of-function single nucleotide polymorphism were more likely to have a history of prednisone use in the previous 12 months, with adjustment for ICS and long-acting ß(2)-agonists use (odds ratio, 2.7; 95% confidence interval, 1.2-6.2; P = 0.018). Despite medium-dose ICS, attenuated pore function predicted earlier exacerbations in incompletely controlled patients with moderate asthma (hazard ratio, 3.2; confidence interval, 1.1-9.3; P = 0.033). After establishing control with low-dose ICS in patients with mild asthma, those with attenuated pore function had more asthma symptoms, rescue albuterol use, and FEV(1) reversal (P < 0.001, 0.03, and 0.03, respectively) during the ICS adjustment phase. CONCLUSIONS: P2X(7) pore function protects against exacerbations of asthma and loss of control, independent of baseline severity and the maintenance therapy.


Subject(s)
Asthma/physiopathology , Asthma/therapy , Receptors, Purinergic P2X7/physiology , Adrenal Cortex Hormones/administration & dosage , Adult , Black or African American/genetics , Albuterol/administration & dosage , Asthma/genetics , Asthma/immunology , Case-Control Studies , Disease Progression , Female , Forced Expiratory Volume , Humans , Male , Nuclear Pore/immunology , Polymorphism, Single Nucleotide , Prednisone/administration & dosage , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/immunology
5.
Am J Respir Crit Care Med ; 180(10): 929-35, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19729670

ABSTRACT

RATIONALE: Asthma is a chronic inflammatory airway disease that affects more than 300 million individuals worldwide. Asthma is caused by interaction of genetic and environmental factors. Bronchial hyperresponsiveness (BHR) is a hallmark of asthma and results from increased sensitivity of the airways to physical or chemical stimulants. BHR and asthma are linked to chromosome 5q31-q33. OBJECTIVES: To identify a gene for BHR on chromosome 5q31-q33. METHODS: In 200 Dutch families with asthma, linkage analysis and fine mapping were performed, and the Protocadherin 1 gene (PCDH1) was identified. PCDH1 was resequenced in 96 subjects from ethnically diverse populations to identify novel sequence variants. Subsequent replication studies were undertaken in seven populations from The Netherlands, the United Kingdom, and the United States, including two general population samples, two family samples, and three case-control samples. PCDH1 mRNA and protein expression was investigated using polymerase chain reaction, Western blotting, and immunohistochemistry. MEASUREMENTS AND MAIN RESULTS: In seven out of eight populations (n = 6,168) from The Netherlands, United Kingdom, and United States, PCHD1 gene variants were significantly associated with BHR (P values, 0.005-0.05) This association was present in both families with asthma and general populations. PCDH1 mRNA and protein were expressed in airway epithelial cells and in macrophages. CONCLUSIONS: PCDH1 is a novel gene for BHR in adults and children. The identification of PCDH1 as a BHR susceptibility gene may suggest that a structural defect in the integrity of the airway epithelium, the first line of defense against inhaled substances, contributes to the development of BHR.


Subject(s)
Bronchial Hyperreactivity/genetics , Adult , Asthma/genetics , Child , Chromosome Mapping , Chromosomes, Human, Pair 5 , Genetic Linkage , Genetic Predisposition to Disease/genetics , Humans , Netherlands , United Kingdom , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...