Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 24(3): 604-614, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38189141

ABSTRACT

Breastmilk is a reliable source of biomarker-containing, sloughed breast cells that have the potential to give valuable health insights to new mothers. Furthermore, known DNA-based markers for pregnancy-associated breast cancer are chemically stable and can be safely stored on a commercially available FTA® Elute Micro (EM) card, which can subsequently be mailed to a testing facility for the cost of a stamp. In theory, this archiving process can be performed by nonprofessionals in very low-resource settings as it simply requires placing a drop of breastmilk on an EM card. Although this level of convenience is paramount for new mothers, the low cell density of breastmilk complicates archiving on an EM card as such commercial products and associated protocols were designed for high-cell density physiological fluids such as blood. In this study, we present the use of a deterministic lateral displacement (DLD) device combined with porous superabsorbent polymers and hydrophobic sponges to achieve simple and low-cost cell enrichment in breastmilk. As the critical separation diameter in a DLD device is more heavily dependent on lithographically controlled pillar layout than fluid or flow properties, our use of DLD microfluidics allowed for the accommodation of both varying viscosities in human breastmilk samples and a varying pressure of actuation resulting from manual, syringe-driven operation. We demonstrate successful cell enrichment (>11×) and a corresponding increase in the DNA concentration of EM card elutions among breastmilk samples processed with our hybrid microfluidic system. As our device achieves sufficiently high cell enrichment in breastmilk samples while only requiring the user to push a syringe for 4 min with reasonable effort, we believe that it has high potential to expand EM card DNA archiving for diagnostic applications with low-cell density physiological fluids and in low-resource settings.


Subject(s)
Microfluidics , Milk, Human , Humans , Cell Separation/methods , DNA
2.
J R Soc Interface ; 19(189): 20210929, 2022 04.
Article in English | MEDLINE | ID: mdl-35382579

ABSTRACT

Poly(dimethylsiloxane) (PDMS) is widely used in biomedical settings such as microfluidics for its optical transparency, castability, gas permeability and relative biocompatibility. While PDMS devices with certain modifications or treatments have been used for mammalian pre-implantation embryo culture, it is unclear why native PDMS leads to significant embryo death. In this study, we employ Nile Red as a model hydrophobic small molecule to demonstrate that significant hydrophobic sequestration occurs on native PDMS substrates even with a bovine serum albumin-containing KSOM pre-equilibration. Our results suggest that this small molecule sequestration has detrimental effects on mouse embryo development in PDMS static culture wells, with 0% blastocyst development rates from embryos cultured on native PDMS. We found that prior saturation of the PDMS culture well with water vapour only rescues about 10% of blastocyst development rates, indicating osmolality alone is not responsible for the high rates of embryo arrest. We also present a safe and simple Pluronic F127 pretreatment for PDMS substrates that successfully circumvented the harmful effects of native PDMS, achieving a blastocyst and implantation rate akin to that of our polystyrene controls. Our results call into question how researchers and clinicians can account for the alterations in medium composition and embryo secretions when using hydrophobic substrates, especially in the mammalian embryo culture setting where minimum effective concentrations of peptides and amino acids are commonplace.


Subject(s)
Dimethylpolysiloxanes , Embryonic Development , Adsorption , Animals , Dimethylpolysiloxanes/chemistry , Embryo, Mammalian , Mammals , Mice
3.
Mol Hum Reprod ; 27(1)2021 01 22.
Article in English | MEDLINE | ID: mdl-33543291

ABSTRACT

Owing to the rise of ART and mounting reports of epigenetic modification associated with them, an understanding of optimal embryo culture conditions and reliable indicators of embryo quality are highly sought after. There is a growing body of evidence that mechanical biomarkers can rival embryo morphology as an early indicator of developmental potential and that biomimetic mechanical cues can promote healthy development in preimplantation embryos. This review will summarize studies that investigate the role of mechanics as both indicators and promoters of mammalian preimplantation embryo development and evaluate their potential for improving future embryo culture systems.


Subject(s)
Blastocyst , Embryo Culture Techniques , Reproductive Techniques, Assisted , Animals , Biomedical Engineering , Biophysical Phenomena , Fallopian Tubes/physiology , Female , Humans
4.
ACS Biomater Sci Eng ; 6(4): 1965-1976, 2020 04 13.
Article in English | MEDLINE | ID: mdl-33455329

ABSTRACT

Biophysical properties of cells, such as cell mechanics, cell shape, and cell migration, are emerging hallmarks for characterizing various cell functions. Conversely, disruptions to these biophysical properties may be used as reliable indicators of disruptions to cell homeostasis, such as in the case of chemical-induced toxicity. In this study, we demonstrate that treatment of lead(II) nitrate and cadmium nitrate leads to dosage-dependent changes in a collection of biophysical properties, including cellular traction forces, focal adhesions, mechanical stiffness, cell shape, migration speed, permeability, and wound-healing efficacy in mammalian cells. As those changes appear within a few hours after the treatment with a trace amount of lead/cadmium, our results highlight the promise of using biophysical properties to screen environmental chemicals to identify potential toxicants and establish dose response curves. Our systematic and quantitative characterization of the rapid changes in cytoskeletal structure and cell functions upon heavy metal treatment may inspire new research on the mechanisms of toxicity.


Subject(s)
Focal Adhesions , Metals, Heavy , Animals , Biophysics , Cell Adhesion , Cell Movement , Metals, Heavy/toxicity
5.
Methods Mol Biol ; 1627: 235-244, 2017.
Article in English | MEDLINE | ID: mdl-28836206

ABSTRACT

Recent findings suggest that mechanical forces strongly influence wound repair and fibrosis across multiple organ systems. Traction force is vital to the characterization of cellular responses to mechanical stimuli. Using hydrogel-based traction force microscopy, a FRET-based tension sensor, or microengineered cantilevers, the magnitude of traction forces can be measured. Here, we describe a traction force measurement methodology using a dense array of elastomeric microposts. This platform can be used to measure the traction force of a single cell or a colony of cells with or without geometric confinement.


Subject(s)
Biomechanical Phenomena , Extracellular Matrix , Fibrosis , Humans , Microscopy, Fluorescence , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...