Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 12(12): 1648-1653, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37987786

ABSTRACT

Colloidal Nafion morphology plays a critical role in determining the performance of fuel cells and electrolyzers. While small-angle neutron scattering (SANS) studies previously described Nafion in liquid media as dispersed cylinders, the analysis remains nonunique with multiple possible morphological descriptions of the data. Here, using SANS and all-atomistic molecular dynamics, we confirm that Nafion morphology in liquid media differs substantially depending on dispersing agent and dispersion method. H+ Nafion dispersed in N-methyl pyrrolidone forms swollen cluster particles with physically cross-linked ionic groups. Scattering profiles from dispersed Nafion membrane have a large structure factor feature not observed for redispersed Nafion D-521. H+ Nafion dispersed in water has a highly elongated cylindrical morphology (radius = 10 ± 1.5 Å, height = 358 ± 4.7 Å) with fully dissociated and solvated sulfonic acid groups on the particle wall. These results highlight an important discrepancy between the methods of preparing Nafion dispersions and the use of simplified analysis techniques to describe Nafion morphology.

2.
Rev Sci Instrum ; 89(5): 055115, 2018 May.
Article in English | MEDLINE | ID: mdl-29864818

ABSTRACT

In situ measurements of geological materials under compression and with hydrostatic fluid pressure are important in understanding their behavior under field conditions, which in turn provides critical information for application-driven research. In particular, understanding the role of nano- to micro-scale porosity in the subsurface liquid and gas flow is critical for the high-fidelity characterization of the transport and more efficient extraction of the associated energy resources. In other applications, where parts are produced by the consolidation of powders by compression, the resulting porosity and crystallite orientation (texture) may affect its in-use characteristics. Small-angle neutron scattering (SANS) and ultra SANS are ideal probes for characterization of these porous structures over the nano to micro length scales. Here we show the design, realization, and performance of a novel neutron scattering sample environment, a specially designed compression cell, which provides compressive stress and hydrostatic pressures with effective stress up to 60 MPa, using the neutron beam to probe the effects of stress vectors parallel to the neutron beam. We demonstrate that the neutron optics is suitable for the experimental objectives and that the system is highly stable to the stress and pressure conditions of the measurements.

3.
J Am Chem Soc ; 133(51): 20735-7, 2011 Dec 28.
Article in English | MEDLINE | ID: mdl-22126391

ABSTRACT

The synthesis of pure δ-MoN with desired superconducting properties usually requires extreme conditions, such as high temperature and high pressure, which hinders its fundamental studies and applications. Herein, by using a chemical solution method, epitaxial δ-MoN thin films have been grown on c-cut Al(2)O(3) substrates at a temperature lower than 900 °C and an ambient pressure. The films are phase pure and show a T(c) of 13.0 K with a sharp transition. In addition, the films show a high critical field and excellent current carrying capabilities, which further prove the superior quality of these chemically prepared epitaxial thin films.

4.
ACS Nano ; 3(8): 2157-62, 2009 Aug 25.
Article in English | MEDLINE | ID: mdl-19640000

ABSTRACT

Directly spinning carbon nanotube (CNT) fibers from vertically aligned CNT arrays is a promising way for the application of CNTs in the field of high-performance materials. However, most of the reported CNT arrays are not spinnable. In this work, by controlling catalyst pretreatment conditions, we demonstrate that the degree of spinnability of CNTs is closely related to the morphology of CNT arrays. Shortest catalyst pretreatment time led to CNT arrays with the best spinnability, while prolonged pretreatment resulted in coarsening of catalyst particles and nonspinnable CNTs. By controlling the coalescence of catalyst particles, we further demonstrate the growth of undulating CNT arrays with uniform and tunable waviness. The CNT arrays can be tuned from well-aligned, spinnable forests to uniformly wavy, foam-like films. To the best of our knowledge, this is the first systematical study on the correlation between catalyst pretreatment, CNT morphology, and CNT spinnability.

5.
Angew Chem Int Ed Engl ; 48(8): 1490-3, 2009.
Article in English | MEDLINE | ID: mdl-19145621

ABSTRACT

Film studies: Epitaxial films of BaZrN(2) (see TEM image) and BaHfN(2) are grown by polymer-assisted deposition on SrTiO(3) (STO) substrates. The films are phase-pure, allowing the intrinsic physical properties of the ternary nitrides to be studied. From 5 to 300 K, the films exhibit metallic-like resistivity-temperature behavior, with large residual resistivity ratios.

6.
J Am Chem Soc ; 130(46): 15224-5, 2008 Nov 19.
Article in English | MEDLINE | ID: mdl-18939844

ABSTRACT

It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...