Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Brain ; 145(2): 607-620, 2022 04 18.
Article in English | MEDLINE | ID: mdl-34529042

ABSTRACT

High-throughput DNA sequencing is increasingly employed to diagnose single gene neurological and neuromuscular disorders. Large volumes of data present new challenges in data interpretation and its useful translation into clinical and genetic counselling for families. Even when a plausible gene is identified with confidence, interpretation of the clinical significance and inheritance pattern of variants can be challenging. We report our approach to evaluating variants in the skeletal muscle chloride channel ClC-1 identified in 223 probands with myotonia congenita as an example of these challenges. Sequencing of CLCN1, the gene that encodes CLC-1, is central to the diagnosis of myotonia congenita. However, interpreting the pathogenicity and inheritance pattern of novel variants is notoriously difficult as both dominant and recessive mutations are reported throughout the channel sequence, ClC-1 structure-function is poorly understood and significant intra- and interfamilial variability in phenotype is reported. Heterologous expression systems to study functional consequences of CIC-1 variants are widely reported to aid the assessment of pathogenicity and inheritance pattern. However, heterogeneity of reported analyses does not allow for the systematic correlation of available functional and genetic data. We report the systematic evaluation of 95 CIC-1 variants in 223 probands, the largest reported patient cohort, in which we apply standardized functional analyses and correlate this with clinical assessment and inheritance pattern. Such correlation is important to determine whether functional data improves the accuracy of variant interpretation and likely mode of inheritance. Our data provide an evidence-based approach that functional characterization of ClC-1 variants improves clinical interpretation of their pathogenicity and inheritance pattern, and serve as reference for 34 previously unreported and 28 previously uncharacterized CLCN1 variants. In addition, we identify novel pathogenic mechanisms and find that variants that alter voltage dependence of activation cluster in the first half of the transmembrane domains and variants that yield no currents cluster in the second half of the transmembrane domain. None of the variants in the intracellular domains were associated with dominant functional features or dominant inheritance pattern of myotonia congenita. Our data help provide an initial estimate of the anticipated inheritance pattern based on the location of a novel variant and shows that systematic functional characterization can significantly refine the assessment of risk of an associated inheritance pattern and consequently the clinical and genetic counselling.


Subject(s)
Myotonia Congenita , Myotonia , Chloride Channels/genetics , Humans , Mutation/genetics , Myotonia/genetics , Myotonia Congenita/genetics , Phenotype
2.
Article in English | MEDLINE | ID: mdl-34716203

ABSTRACT

An SLC30A9-associated cerebrorenal syndrome was first reported in consanguineous Bedouin kindred by Perez et al. in 2017. Although the function of the gene has not yet been fully elucidated, it may be implicated in Wnt signaling and nuclear regulation, as well as in cell and mitochondrial zinc regulation. In this research report, we present a female proband with two distinct, inherited autosomal recessive loss-of-function SLC30A9 variants from unrelated parents. To our knowledge, this is the first reported case of a possible SLC30A9-associated cerebrorenal syndrome in a nonconsanguineous family. Furthermore, a limited statistical analysis was conducted to identify possible allele frequency differences between populations. Our findings provide further support for an SLC30A9-associated cerebrorenal syndrome and may help clarify the gene's function through its possible disease association.


Subject(s)
Cation Transport Proteins , Intellectual Disability , Cation Transport Proteins/genetics , Cell Cycle Proteins/genetics , Consanguinity , Family , Female , Humans , Inheritance Patterns , Intellectual Disability/genetics , Parents , Pedigree , Syndrome , Transcription Factors/genetics
3.
N Engl J Med ; 385(20): 1868-1880, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34758253

ABSTRACT

BACKGROUND: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.K. National Health Service. Other parts of this project focus on patients with cancer and infection. METHODS: We conducted a pilot study involving 4660 participants from 2183 families, among whom 161 disorders covering a broad spectrum of rare diseases were present. We collected data on clinical features with the use of Human Phenotype Ontology terms, undertook genome sequencing, applied automated variant prioritization on the basis of applied virtual gene panels and phenotypes, and identified novel pathogenic variants through research analysis. RESULTS: Diagnostic yields varied among family structures and were highest in family trios (both parents and a proband) and families with larger pedigrees. Diagnostic yields were much higher for disorders likely to have a monogenic cause (35%) than for disorders likely to have a complex cause (11%). Diagnostic yields for intellectual disability, hearing disorders, and vision disorders ranged from 40 to 55%. We made genetic diagnoses in 25% of the probands. A total of 14% of the diagnoses were made by means of the combination of research and automated approaches, which was critical for cases in which we found etiologic noncoding, structural, and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohortwide burden testing across 57,000 genomes enabled the discovery of three new disease genes and 19 new associations. Of the genetic diagnoses that we made, 25% had immediate ramifications for clinical decision making for the patients or their relatives. CONCLUSIONS: Our pilot study of genome sequencing in a national health care system showed an increase in diagnostic yield across a range of rare diseases. (Funded by the National Institute for Health Research and others.).


Subject(s)
Genome, Human , Rare Diseases/genetics , Adolescent , Adult , Child , Child, Preschool , Family Characteristics , Female , Genetic Variation , Humans , Male , Middle Aged , Pilot Projects , Polymerase Chain Reaction , Rare Diseases/diagnosis , Sensitivity and Specificity , State Medicine , United Kingdom , Whole Genome Sequencing , Young Adult
4.
Eur J Med Genet ; 64(3): 104162, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33567347

ABSTRACT

Three sibling fetuses identified with limb shortening and thoracic narrowing at twelve weeks' gestation on first trimester ultrasound examination are presented. The parents were non-consanguineous, Caucasian, healthy, of normal stature and had a healthy normal daughter. The radiographic abnormalities were highly suggestive of thanatophoric dysplasia, but molecular analysis failed to identify a pathogenic variant in FGFR3. The three fetuses were found to have identical compound heterozygous mutations in RMRP in trans, one inherited from the mother and one from the father. This represents the early prenatal presentation and fetal findings of metaphyseal dysplasia type McKusick (Cartilage-hair hypoplasia; CHH)/anauxetic dysplasia spectrum of disorders.


Subject(s)
Dwarfism/genetics , Genetic Testing , Hair/abnormalities , Hirschsprung Disease/genetics , Osteochondrodysplasias/congenital , Primary Immunodeficiency Diseases/genetics , Thanatophoric Dysplasia/genetics , Ultrasonography, Prenatal , Adult , Diagnosis, Differential , Dwarfism/diagnostic imaging , Dwarfism/pathology , Female , Hair/diagnostic imaging , Hair/pathology , Heterozygote , Hirschsprung Disease/diagnostic imaging , Hirschsprung Disease/pathology , Humans , Mutation , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Pregnancy , Primary Immunodeficiency Diseases/diagnostic imaging , Primary Immunodeficiency Diseases/pathology , RNA, Long Noncoding/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Thanatophoric Dysplasia/diagnostic imaging , Thanatophoric Dysplasia/pathology
5.
Article in English | MEDLINE | ID: mdl-32532879

ABSTRACT

A 9-yr 8-mo-old right-handed female presented with a history of gait difficulties, which first became apparent at age 9 mo of age, along with slurred speech and hand tremors while holding a tray. Her past medical history was significant for global developmental delay, and she was attending fourth grade special education classes. On examination, she had an ataxic gait, dysarthria, absent deep tendon reflexes, and flexor plantar responses. There were no signs of optic atrophy or hearing loss. Nerve conduction studies were consistent with an axonal neuropathy. A fascicular sural nerve biopsy showed a marked decrease of myelinated fibers larger than 6 µm in diameter as compared with an age-matched control. By electron microscopy, clusters of degenerating axonal mitochondria in both myelinated and unmyelinated fibers were frequently found. Whole-exome sequencing revealed a heterozygous c.314C > T (p.Thr105Met) missense variant in MFN2 in the patient but not in her mother. The father was unavailable for testing. The phenotypes with MFN2 variants can be quite variable, including intellectual disability, optic atrophy, auditory impairment, spinal atrophy with or without hydromyelia, and hydrocephalus. We report here that early onset ataxia with intellectual disability can also be associated with MFN2-related Charcot-Marie-Tooth, Type 2A2A diagnosis, the most common type of autosomal dominant axonal neuropathy.


Subject(s)
Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/genetics , Phenotype , Spinocerebellar Degenerations/diagnosis , Spinocerebellar Degenerations/genetics , Age of Onset , Axons/ultrastructure , Biomarkers , Chromosome Mapping , Family , Female , GTP Phosphohydrolases/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing , Humans , Infant , Mitochondria/genetics , Mitochondria/ultrastructure , Mitochondrial Proteins/genetics , Mutation , Pregnancy , Symptom Assessment , Exome Sequencing
6.
Clin Genet ; 98(2): 172-178, 2020 08.
Article in English | MEDLINE | ID: mdl-32415735

ABSTRACT

UBE2A deficiency, that is, intellectual disability (ID) Nascimento type (MIM 300860), is an X-linked syndrome characterized by developmental delay, moderate to severe ID, seizures, dysmorphisms, skin anomalies, and urogenital malformations. Forty affected subjects have been reported thus far, with 31 cases having intragenic UBE2A variants. Here, we report on additional eight affected subjects from seven unrelated families who were found to be hemizygous for previously unreported UBE2A missense variants (p.Glu62Lys, p.Arg95Cys, p.Thr99Ala, and p.Arg135Trp) or small in-frame deletions (p.Val81_Ala83del, and p.Asp101del). A wide phenotypic spectrum was documented in these subjects, ranging from moderate ID associated with mild dysmorphisms to severe features including congenital heart defects (CHD), severe cognitive impairment, and pineal gland tumors. Four variants affected residues (Glu62, Arg95, Thr99 and Asp101) that contribute to stabilizing the structure of the E3 binding domain. The three-residue in-frame deletion, p.Val81_Ala83del, resulted from aberrant processing of the transcript. This variant and p.Arg135Trp mapped to regions of the protein located far from the E3 binding region, and caused variably accelerated protein degradation. By reviewing available clinical information, we revise the clinical and molecular profile of the disorder and document genotype-phenotype correlations. Pineal gland cysts/tumors, CHD and hypogammaglobulinemia emerge as recurrent features.


Subject(s)
Genetic Diseases, X-Linked/genetics , Heart Defects, Congenital/genetics , Intellectual Disability/genetics , Ubiquitin-Conjugating Enzymes/genetics , Child, Preschool , Female , Genetic Diseases, X-Linked/complications , Genetic Diseases, X-Linked/pathology , Genetic Predisposition to Disease , Heart Defects, Congenital/complications , Heart Defects, Congenital/pathology , Humans , Infant , Intellectual Disability/complications , Intellectual Disability/pathology , Male , Pedigree , Skin Abnormalities/complications , Skin Abnormalities/genetics , Skin Abnormalities/pathology , Urogenital Abnormalities/complications , Urogenital Abnormalities/genetics , Urogenital Abnormalities/pathology
7.
BMC Med Genet ; 21(1): 7, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31910817

ABSTRACT

BACKGROUND: Osteocraniostenosis (OCS) is a rare genetic disorder characterised by premature closure of cranial sutures, gracile bones and perinatal lethality. Previously, diagnosis has only been possible postnatally on clinical and radiological features. This study describes the first prenatal diagnosis of OCS. CASE PRESENTATION: In this case prenatal ultrasound images were suggestive of a serious but non-lethal skeletal dysplasia. Due to the uncertain prognosis the parents were offered Whole Exome Sequencing (WES), which identified a specific gene mutation in the FAMIIIa gene. This mutation had previously been detected in two cases and was lethal in both perinatally. This established the diagnosis, a clear prognosis and allowed informed parental choice regarding ongoing pregnancy management. CONCLUSIONS: This case report supports the use of targeted WES prenatally to confirm the underlying cause and prognosis of sonographically suspected abnormalities.


Subject(s)
Bone Diseases, Developmental/diagnosis , Craniofacial Abnormalities/diagnosis , Cytokines/genetics , Exome Sequencing , Prenatal Diagnosis , Adult , Bone Diseases, Developmental/diagnostic imaging , Bone Diseases, Developmental/genetics , Bone Diseases, Developmental/pathology , Craniofacial Abnormalities/diagnostic imaging , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/pathology , Female , Humans , Infant, Newborn , Parents , Pregnancy
8.
Article in English | MEDLINE | ID: mdl-31387860

ABSTRACT

Whole-exome sequencing was used to identify the genetic etiology of a rapidly progressing neurological disease present in two of six siblings with early childhood onset of severe progressive spastic paraparesis and learning disabilities. A homozygous mutation (c.2005G>T, p, V669L) was found in VAC14, and the clinical phenotype is consistent with the recently described VAC14-related striatonigral degeneration, childhood-onset syndrome (SNDC) (MIM#617054). However, the phenotype includes a distinct clinical presentation of retinitis pigmentosa (RP), which has not previously been reported in association with VAC14 mutations. Brain magnetic resonance imaging (MRI) revealed abnormal magnetic susceptibility in the globus pallidus, which can be seen in neurodegeneration with brain iron accumulation (NBIA). RP is a group of inherited retinal diseases with phenotypic/genetic heterogeneity, and the pathophysiologic basis of RP is not completely understood but is thought to be due to a primary retinal photoreceptor cell degenerative process. Most cases of RP are seen in isolation (nonsyndromic); this is a report of RP in two siblings with VAC14-associated syndrome, and it is suggested that a connection between RP and VAC14-associated syndrome should be explored in future studies.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Retinitis Pigmentosa/genetics , Adolescent , Brain/pathology , Exome/genetics , Family , Female , Homozygote , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Male , Membrane Proteins/metabolism , Mutation/genetics , Paraparesis, Spastic/genetics , Pedigree , Phenotype , Retina/pathology , Retinitis Pigmentosa/metabolism , Siblings , Syndrome , Exome Sequencing/methods , Young Adult
9.
Brain ; 139(Pt 2): 380-91, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26912519

ABSTRACT

Ion channel dysfunction causes a range of neurological disorders by altering transmembrane ion fluxes, neuronal or muscle excitability, and neurotransmitter release. Genetic neuronal channelopathies affecting peripheral axons provide a unique opportunity to examine the impact of dysfunction of a single channel subtype in detail in vivo. Episodic ataxia type 2 is caused by mutations in CACNA1A, which encodes the pore-forming subunit of the neuronal voltage-gated calcium channel Cav2.1. In peripheral motor axons, this channel is highly expressed at the presynaptic neuromuscular junction where it contributes to action potential-evoked neurotransmitter release, but it is not expressed mid-axon or thought to contribute to action potential generation. Eight patients from five families with genetically confirmed episodic ataxia type 2 underwent neurophysiological assessment to determine whether axonal excitability was normal and, if not, whether changes could be explained by Cav2.1 dysfunction. New mutations in the CACNA1A gene were identified in two families. Nerve conduction studies were normal, but increased jitter in single-fibre EMG studies indicated unstable neuromuscular transmission in two patients. Excitability properties of median motor axons were compared with those in 30 age-matched healthy control subjects. All patients had similar excitability abnormalities, including a high electrical threshold and increased responses to hyperpolarizing (P < 0.00007) and depolarizing currents (P < 0.001) in threshold electrotonus. In the recovery cycle, refractoriness (P < 0.0002) and superexcitability (P < 0.006) were increased. Cav2.1 dysfunction in episodic ataxia type 2 thus has unexpected effects on axon excitability, which may reflect an indirect effect of abnormal calcium current fluxes during development.


Subject(s)
Ataxia/diagnosis , Ataxia/genetics , Axons/physiology , Calcium Channels, N-Type/physiology , Motor Neurons/physiology , Nystagmus, Pathologic/diagnosis , Nystagmus, Pathologic/genetics , Presynaptic Terminals/physiology , Adult , Aged , Ataxia/physiopathology , Calcium Channels/genetics , Electromyography/methods , Female , Humans , Male , Middle Aged , Nystagmus, Pathologic/physiopathology , Young Adult
10.
Neurology ; 82(4): 292-9, 2014 01 28.
Article in English | MEDLINE | ID: mdl-24363131

ABSTRACT

OBJECTIVE: In many cases where Huntington disease (HD) is suspected, the genetic test for HD is negative: these are known as HD phenocopies. A repeat expansion in the C9orf72 gene has recently been identified as a major cause of familial and sporadic frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Our objective was to determine whether this mutation causes HD phenocopies. METHODS: A cohort of 514 HD phenocopy patients were analyzed for the C9orf72 expansion using repeat primed PCR. In cases where the expansion was found, Southern hybridization was performed to determine expansion size. Clinical case notes were reviewed to determine the phenotype of expansion-positive cases. RESULTS: Ten subjects (1.95%) had the expansion, making it the most common identified genetic cause of HD phenocopy presentations. The size of expansion was not significantly different from that associated with other clinical presentations of C9orf72 expanded cases. The C9orf72 expansion-positive subjects were characterized by the presence of movement disorders, including dystonia, chorea, myoclonus, tremor, and rigidity. Furthermore, the age at onset in this cohort was lower than previously reported for subjects with the C9orf72 expansion and included one case with pediatric onset. DISCUSSION: This study extends the known phenotype of the C9orf72 expansion in both age at onset and movement disorder symptoms. We propose a revised clinico-genetic algorithm for the investigation of HD phenocopy patients based on these data.


Subject(s)
DNA Repeat Expansion/genetics , Huntington Disease/genetics , Proteins/genetics , Adolescent , Adult , Age of Onset , C9orf72 Protein , Child , Cognition Disorders/etiology , Cognition Disorders/genetics , Cohort Studies , DNA Mutational Analysis , Female , Humans , Huntington Disease/complications , Magnetic Resonance Imaging , Male , Mental Status Schedule , Middle Aged , Phenotype , Severity of Illness Index , Young Adult
11.
Neurology ; 80(16): 1472-5, 2013 Apr 16.
Article in English | MEDLINE | ID: mdl-23516313

ABSTRACT

OBJECTIVES: To obtain minimum point prevalence rates for the skeletal muscle channelopathies and to evaluate the frequency distribution of mutations associated with these disorders. METHODS: Analysis of demographic, clinical, electrophysiologic, and genetic data of all patients assessed at our national specialist channelopathy service. Only patients living in the United Kingdom with a genetically defined diagnosis of nondystrophic myotonia or periodic paralysis were eligible for the study. Prevalence rates were estimated for England, December 2011. RESULTS: A total of 665 patients fulfilled the inclusion criteria, of which 593 were living in England, giving a minimum point prevalence of 1.12/100,000 (95% confidence interval [CI] 1.03-1.21). Disease-specific prevalence figures were as follows: myotonia congenita 0.52/100,000 (95% CI 0.46-0.59), paramyotonia congenita 0.17/100,000 (95% CI 0.13-0.20), sodium channel myotonias 0.06/100,000 (95% CI 0.04-0.08), hyperkalemic periodic paralysis 0.17/100,000 (95% CI 0.13-0.20), hypokalemic periodic paralysis 0.13/100,000 (95% CI 0.10-0.17), and Andersen-Tawil syndrome (ATS) 0.08/100,000 (95% CI 0.05-0.10). In the whole sample (665 patients), 15 out of 104 different CLCN1 mutations accounted for 60% of all patients with myotonia congenita, 11 out of 22 SCN4A mutations for 86% of paramyotonia congenita/sodium channel myotonia pedigrees, and 3 out of 17 KCNJ2 mutations for 42% of ATS pedigrees. CONCLUSION: We describe for the first time the overall prevalence of genetically defined skeletal muscle channelopathies in England. Despite the large variety of mutations observed in patients with nondystrophic myotonia and ATS, a limited number accounted for a large proportion of cases.


Subject(s)
Channelopathies/epidemiology , Channelopathies/genetics , Muscle, Skeletal/physiology , Muscular Diseases/epidemiology , Muscular Diseases/genetics , Adult , Chloride Channels/genetics , Data Interpretation, Statistical , Databases, Genetic , England/epidemiology , Female , Humans , Hypokalemic Periodic Paralysis/epidemiology , Hypokalemic Periodic Paralysis/genetics , Male , Middle Aged , Mutation/genetics , Mutation/physiology , Myotonia/epidemiology , Myotonia/genetics , Myotonic Disorders/epidemiology , Myotonic Disorders/genetics , NAV1.4 Voltage-Gated Sodium Channel/genetics , Paralyses, Familial Periodic/epidemiology , Paralyses, Familial Periodic/genetics , Paralysis, Hyperkalemic Periodic/epidemiology , Paralysis, Hyperkalemic Periodic/genetics , Potassium Channels, Inwardly Rectifying/genetics , Prevalence , Sodium Channels/genetics , Sodium Channels/physiology , United Kingdom/epidemiology
12.
Neurology ; 79(22): 2194-200, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23152584

ABSTRACT

OBJECTIVE: The objective of this study was to validate the immunohistochemical assay for the diagnosis of nondystrophic myotonia and to provide full clarification of clinical disease to patients in whom basic genetic testing has failed to do so. METHODS: An immunohistochemical assay of sarcolemmal chloride channel abundance using 2 different ClC1-specific antibodies. RESULTS: This method led to the identification of new mutations, to the reclassification of W118G in CLCN1 as a moderately pathogenic mutation, and to confirmation of recessive (Becker) myotonia congenita in cases when only one recessive CLCN1 mutation had been identified by genetic testing. CONCLUSIONS: We have developed a robust immunohistochemical assay that can detect loss of sarcolemmal ClC-1 protein on muscle sections. This in combination with gene sequencing is a powerful approach to achieving a final diagnosis of nondystrophic myotonia.


Subject(s)
Chloride Channels/genetics , Immunoenzyme Techniques/methods , Immunoenzyme Techniques/standards , Myotonia Congenita/diagnosis , Myotonia Congenita/genetics , Adult , Aged , Chloride Channels/metabolism , Female , Genes, Recessive , Genetic Testing/methods , Humans , Male , Middle Aged , Myotonia Congenita/enzymology , Point Mutation/genetics , Reproducibility of Results , Young Adult
13.
Hum Mutat ; 33(9): 1324-32, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22689585

ABSTRACT

The inherited cerebellar ataxias are a diverse group of clinically and genetically heterogeneous neurodegenerative disorders. Inheritance patterns of these disorders can be complex with autosomal dominant, autosomal recessive, X-linked, and mitochondrial inheritance demonstrated by one or more ataxic syndromes. The broad range of mutation types found in inherited ataxia contributes to the complex genetic etiology of these disorders. The majority of inherited ataxias are caused by repeat expansions; however, conventional mutations are important causes of the rarer dominant and recessive ataxias. Advances in sequencing technology have allowed for much broader testing of these rare ataxia genes. This is relevant to the aims of the Human Variome Project, which aims to collate and store gene variation data through mutation databases. Variant data is currently located in a range of public and commercial resources. Few locus-specific databases have been created to catalogue variation in the dominant ataxia genes although there are several databases for some recessive genes. Developing these resources will facilitate a better understanding of the complex genotype-phenotype relationships in these disorders and assist interpretation of gene variants as testing for rarer ataxia genes becomes commonplace.


Subject(s)
Databases, Genetic , Genetic Heterogeneity , Mutation , Spinocerebellar Degenerations/diagnosis , Spinocerebellar Degenerations/genetics , Genes, Recessive , Genetic Association Studies , Genetic Loci , Genetic Research , Genome, Human , Humans , Microsatellite Repeats
14.
Neurogenetics ; 12(3): 169-73, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21630033

ABSTRACT

The rate of DNA variation discovery has accelerated the need to collate, store and interpret the data in a standardised coherent way and is becoming a critical step in maximising the impact of discovery on the understanding and treatment of human disease. This particularly applies to the field of neurology as neurological function is impaired in many human disorders. Furthermore, the field of neurogenetics has been proven to show remarkably complex genotype-to-phenotype relationships. To facilitate the collection of DNA sequence variation pertaining to neurogenetic disorders, we have initiated the "Neurogenetics Consortium" under the umbrella of the Human Variome Project. The Consortium's founding group consisted of basic researchers, clinicians, informaticians and database creators. This report outlines the strategic aims established at the preliminary meetings of the Neurogenetics Consortium and calls for the involvement of the wider neurogenetic community in enabling the development of this important resource.


Subject(s)
Databases, Genetic/standards , Genetic Variation , Genetics, Medical/organization & administration , International Cooperation , Nervous System/metabolism , Algorithms , Congresses as Topic , Genetic Variation/physiology , Genetics, Medical/standards , Human Genome Project/organization & administration , Humans , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Research Report
15.
Ann Neurol ; 69(2): 328-40, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21387378

ABSTRACT

OBJECTIVE: To improve the accuracy of genotype prediction and guide genetic testing in patients with muscle channelopathies we applied and refined specialized electrophysiological exercise test parameters. METHODS: We studied 56 genetically confirmed patients and 65 controls using needle electromyography, the long exercise test, and short exercise tests at room temperature, after cooling, and rewarming. RESULTS: Concordant amplitude-and-area decrements were more reliable than amplitude-only measurements when interpreting patterns of change during the short exercise tests. Concordant amplitude-and-area pattern I and pattern II decrements of >20% were 100% specific for paramyotonia congenita and myotonia congenita, respectively. When decrements at room temperature and after cooling were <20%, a repeat short exercise test after rewarming was useful in patients with myotonia congenita. Area measurements and rewarming distinguished true temperature sensitivity from amplitude reduction due to cold-induced slowing of muscle fiber conduction. In patients with negative short exercise tests, symptomatic eye closure myotonia predicted sodium channel myotonia over myotonia congenita. Distinctive "tornado-shaped" neuromyotonia-like discharges may be seen in patients with paramyotonia congenita. In the long exercise test, area decrements from pre-exercise baseline were more sensitive than amplitude decrements-from-maximum-compound muscle action potential (CMAP) in patients with Andersen-Tawil syndrome. Possible ethnic differences in the normative data of the long exercise test argue for the use of appropriate ethnically-matched controls. INTERPRETATION: Concordant CMAP amplitude-and-area decrements of >20% allow more reliable interpretation of the short exercise tests and aid accurate DNA-based diagnosis. In patients with negative exercise tests, specific clinical features are helpful in differentiating sodium from chloride channel myotonia. A modified algorithm is suggested.


Subject(s)
Channelopathies/diagnosis , Exercise Test , Muscle Weakness/diagnosis , Muscle, Skeletal/pathology , Myotonic Disorders/diagnosis , Adolescent , Adult , Aged , Channelopathies/genetics , Electromyography , Female , Humans , Male , Middle Aged , Muscle Weakness/genetics , Myotonic Disorders/genetics
16.
Mov Disord ; 26(5): 905-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21287604

ABSTRACT

BACKGROUND: Autosomal dominant dopa-responsive dystonia is commonly caused by mutations in the guanosine triphosphate cyclohydrolase-1 gene. METHODS: We report a British family that has been followed for more than 20 years in which no mutations were previously identified. RESULTS: Reanalysis of this pedigree detected a duplication of guanosine triphosphate cyclohydrolase-1 exon 2 in affected family members. mRNA analysis showed a mutant transcript with a tandem exon 2 duplication. Four family members developed dopa-responsive dystonia, with onset in their late teens, and subsequently developed restless leg syndrome and migraine. CONCLUSIONS: This is the first report of an intragenic guanosine triphosphate cyclohydrolase-1 duplication in a dopa-responsive dystonia family.


Subject(s)
Dystonia/genetics , Family Health , GTP Cyclohydrolase/genetics , Genes, Duplicate/genetics , Adult , Antiparkinson Agents/adverse effects , Dystonia/chemically induced , Female , Genetic Testing/methods , Humans , Levodopa/adverse effects , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...