Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Plants (Basel) ; 12(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38068650

ABSTRACT

Plant physiological status is the interaction between the plant genome and the prevailing growth conditions. Accurate characterization of plant physiology is, therefore, fundamental to effective plant phenotyping studies; particularly those focused on identifying traits associated with improved yield, lower input requirements, and climate resilience. Here, we outline the approaches used to assess plant physiology and how these techniques of direct empirical observations of processes such as photosynthetic CO2 assimilation, stomatal conductance, photosystem II electron transport, or the effectiveness of protective energy dissipation mechanisms are unsuited to high-throughput phenotyping applications. Novel optical sensors, remote/proximal sensing (multi- and hyperspectral reflectance, infrared thermography, sun-induced fluorescence), LiDAR, and automated analyses of below-ground development offer the possibility to infer plant physiological status and growth. However, there are limitations to such 'indirect' approaches to gauging plant physiology. These methodologies that are appropriate for the rapid high temporal screening of a number of crop varieties over a wide spatial scale do still require 'calibration' or 'validation' with direct empirical measurement of plant physiological status. The use of deep-learning and artificial intelligence approaches may enable the effective synthesis of large multivariate datasets to more accurately quantify physiological characters rapidly in high numbers of replicate plants. Advances in automated data collection and subsequent data processing represent an opportunity for plant phenotyping efforts to fully integrate fundamental physiological data into vital efforts to ensure food and agro-economic sustainability.

2.
Environ Microbiol Rep ; 15(6): 459-483, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37226644

ABSTRACT

Legumes maintain soil fertility thanks to their associated microbiota but are threatened by climate change that causes soil microbial community structural and functional modifications. The core microbiome associated with different chickpea and lentil genotypes was described after an unexpected climatic event. Results showed that chickpea and lentil bulk soil microbiomes varied significantly between two sampling time points, the first immediately after the rainfall and the second 2 weeks later. Rhizobia were associated with the soil of the more productive chickpea genotypes in terms of flower and fruit number. The root-associated bacteria and fungi were surveyed in lentil genotypes, considering that several parcels showed disease symptoms. The metabarcoding analysis revealed that reads related to fungal pathogens were significantly associated with one lentil genotype. A lentil core prokaryotic community common to all genotypes was identified as well as a genotype-specific one. A higher number of specific bacterial taxa and an enhanced tolerance to fungal diseases characterized a lentil landrace compared to the commercial varieties. This outcome supported the hypothesis that locally adapted landraces might have a high recruiting efficiency of beneficial soil microbes.


Subject(s)
Cicer , Lens Plant , Microbiota , Soil , Microbiota/genetics , Bacteria/genetics , Genotype , Soil Microbiology , Plant Roots/microbiology
3.
Sci Total Environ ; 875: 162672, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36894106

ABSTRACT

Ozone (O3) pollution is a persistent environmental issue worldwide, which causes widespread damage to vegetation, deteriorating plant health and reducing plant productivity. Ethylenediurea (EDU) is a synthetic chemical that has been widely applied in scientific studies as a protectant against O3 phytotoxicities. Despite four decades of active research, the exact mechanisms to explain its mode of action remain unclear. Here, we aimed to reveal whether EDU's phytoprotective property is due to its control over stomatal regulation and/or its action as a nitrogen (N) fertilizer, utilizing stomatal-unresponsive plants of a hybrid poplar (Populus koreana × trichocarpa cv. Peace) grown in a free-air O3-concenctration enrichment (FACE) facility. Plants were treated with water (WAT), EDU (400 mg L-1), or EDU's constitutive amount of N every nine days, and exposed to ambient (AOZ) or elevated (EOZ) O3 during a growing season (June-September). EOZ led to extensive foliar injuries (but protected against rust disease), lower photosynthetic rate (A), impaired dynamics of responses of A to changes in light intensity, and smaller total plant leaf area. EDU protected against common phytotoxicities caused by EOZ without inducing stomatal closure, since stomatal conductance (gs) was generally unresponsive to the experimental treatments. EDU also modulated the dynamic response of A to light fluctuations under O3 stress. N addition acted as a fertilizer but did not satisfactorily protect plants against O3 phytotoxicities. The results suggest that EDU protects against O3 phytotoxicity not by adding N or controlling stomata, which provides a new insight into our understanding of the mode of action of EDU as a protectant against O3 phytotoxicity.


Subject(s)
Air Pollutants , Ozone , Populus , Ozone/toxicity , Populus/physiology , Nitrogen/pharmacology , Fertilizers , Plant Leaves , Photosynthesis/physiology , Protective Agents/pharmacology , Plants , Air Pollutants/toxicity
4.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835502

ABSTRACT

Distinct photosynthetic physiologies are found within the Moricandia genus, both C3-type and C2-type representatives being known. As C2-physiology is an adaptation to drier environments, a study of physiology, biochemistry and transcriptomics was conducted to investigate whether plants with C2-physiology are more tolerant of low water availability and recover better from drought. Our data on Moricandia moricandioides (Mmo, C3), M. arvensis (Mav, C2) and M. suffruticosa (Msu, C2) show that C3 and C2-type Moricandias are metabolically distinct under all conditions tested (well-watered, severe drought, early drought recovery). Photosynthetic activity was found to be largely dependent upon the stomatal opening. The C2-type M. arvensis was able to secure 25-50% of photosynthesis under severe drought as compared to the C3-type M. moricandioides. Nevertheless, the C2-physiology does not seem to play a central role in M. arvensis drought responses and drought recovery. Instead, our biochemical data indicated metabolic differences in carbon and redox-related metabolism under the examined conditions. The cell wall dynamics and glucosinolate metabolism regulations were found to be major discriminators between M. arvensis and M. moricandioides at the transcription level.


Subject(s)
Brassicaceae , Droughts , Drought Resistance , Brassicaceae/metabolism , Photosynthesis/physiology , Plants/metabolism , Water/metabolism , Plant Leaves/metabolism
5.
Sci Total Environ ; 863: 160908, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36535478

ABSTRACT

The limits for stomatal conductance are set by stomatal size (SS) and density (SD). An inverse relationship between SS and SD has been observed in fossil and living plants. This has led to hypotheses proposing that the ratio of SS to SD influences the diffusion pathway for CO2 and degree of physiological stomatal control. However, conclusive evidence supportive of a functional role of the SS-SD relationship is not evident, and patterns in SS-SD may simply reflect geometric constraints in stomatal spacing over a leaf surface. We examine published and new data to investigate the potential functional significance of the relationship between SS and SD to atmospheric [CO2] in multiple generation adaptive responses and short-term acclamatory adjustment of stomatal morphology. Consistent patterns in SS and SD were not evident in fossil and living plants adapted to high [CO2] over many generations. However, evolutionary adaptation to [CO2] strongly affected SS and SD responses to elevated [CO2], with plants adapted to the 'low' [CO2] of the past 10 million years (Myr) showing adjustment of SS-SD, while members of the same species adapted to 'high' [CO2] showed no response. This may suggest that SS and SD responses to future [CO2] will likely constrain the stimulatory effect of 'CO2-fertilisation' on photosynthesis. Angiosperms generally possessed higher densities of smaller stomata that corresponded to a greater degree of physiological stomatal control consistent with selective pressures induced by declining [CO2] over the past 90 Myr. Atmospheric [CO2] has likely shaped stomatal size and density relationships alongside the interaction with stomatal physiological behaviour. The rate and predicted extent of future increases in [CO2] will have profound impacts on the selective pressures shaping SS and SD. Understanding the trade-offs involved in SS-SD and the interaction with [CO2], will be central to the development of more productive climate resilient crops.


Subject(s)
Carbon Dioxide , Plant Stomata , Plant Stomata/physiology , Carbon Dioxide/metabolism , Plant Leaves/physiology , Photosynthesis/physiology , Climate
6.
New Phytol ; 235(4): 1442-1454, 2022 08.
Article in English | MEDLINE | ID: mdl-35672945

ABSTRACT

The Triassic-Jurassic boundary marks the third largest mass extinction event in the Phanerozoic, characterized by a rise in CO2 -concentrations from c. 600 ppm to c. 2100-2400 ppm, coupled with a c. 3.0-4.0°C temperature rise. This is hypothesized to have induced major floral turnover, altering vegetation structure, composition and leaf morphology, which in turn are hypothesized to have driven changes in wildfire. However, the effects of elevated CO2 on fuel properties, such as chemical composition of leaves, are also important in influencing fire behaviour, but yet have not been considered. We test this by selecting three Triassic analogue species grown experimentally in different atmospheric compositions, and analyse variations in leaf chemistry, and leaf level flammability. These data were used to inform a fire behaviour model. We find that all three species tested showed a reduction in their volatile component, leading to lower flammability. Accounting for these variations in a model, our results suggest that leaf intrinsic flammability has a measurable impact on modelled fire behaviour. If scaled up to ecosystem level, periods of elevated CO2 may therefore be capable of inducing both biochemical and morphological changes in fuel properties, and thus may be capable of influencing fire behaviour.


Subject(s)
Ecosystem , Fires , Carbon Dioxide , Extinction, Biological , Plant Leaves/chemistry
7.
Sci Total Environ ; 840: 156606, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35691351

ABSTRACT

The atmospheric concentration of carbon dioxide ([CO2]) and oxygen ([O2]) directly influence rates of photosynthesis (PN) and photorespiration (RPR) through the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). Levels of [CO2] and [O2] have varied over Earth history affecting rates of both CO2 uptake and loss, alongside associated transpirative water-loss. The availability of CO2 has likely acted as a stronger selective pressure than [O2] due to the greater specificity of RubisCO for CO2. The role of [O2], and the interaction of [O2] and [CO2], in plant evolutionary history is less understood. We exposed twelve phylogenetically diverse species to combinations of sub-ambient, ambient and super-ambient [O2] and [CO2] to examine the biochemical and diffusive components of PN and the possible role of [O2] as a selective pressure. Photosynthesis, photosynthetic capacity and stomatal, mesophyll and total conductance to CO2 were higher in the derived eudicot and monocot angiosperms than the more basal ferns, gymnosperms and basal angiosperms which originated in atmospheres characterised by higher CO2:O2 ratios. The ratio of RPR:PN was lower in the monocots, consistent with greater carboxylation capacity and higher stomatal and mesophyll conductance making easier CO2 delivery to chloroplasts. The effect of [O2] and [CO2] on PN/RPR was less evident in more derived species with a higher conductance to CO2. The effect of [O2] was less apparent at high [CO2], suggesting that atmospheric [O2] may only have exerted a strong selective pressure on plant photosynthetic processes during periods characterised by low atmospheric CO2:O2 ratios. Current rising [CO2] will predominantly enhance PN rates in species with low diffusive conductance to CO2.


Subject(s)
Carbon Dioxide , Ribulose-Bisphosphate Carboxylase , Atmosphere , Oxygen , Photosynthesis , Plant Leaves/metabolism , Plants/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism
8.
Physiol Plant ; 174(1): e13639, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35092611

ABSTRACT

Mesophyll conductance (gmCO2 ) is one of the most important components in plant photosynthesis. Tropospheric ozone (O3 ) and drought impair physiological processes, causing damage to photosynthetic systems. However, the combined effects of O3 and drought on gmCO2 are still largely unclear. We investigated leaf gas exchange during mid-summer in three Mediterranean oaks exposed to O3 (ambient [35.2 nmol mol-1 as daily mean]; 1.4 × ambient) and water treatments (WW [well-watered] and WD [water-deficit]). We also examined if leaf traits (leaf mass per area [LMA], foliar abscisic acid concentration [ABA]) could influence the diffusion of CO2 inside a leaf. The combination of O3 and WD significantly decreased net photosynthetic rate (PN ) regardless of the species. The reduction of photosynthesis was associated with a decrease in gmCO2 and stomatal conductance (gsCO2 ) in evergreen Quercus ilex, while the two deciduous oaks (Q. pubescens, Q. robur) also showed a reduction of the maximum rate of carboxylation (Vcmax ) and maximum electron transport rate (Jmax ) with decreased diffusive conductance parameters. The reduction of gmCO2 was correlated with increased [ABA] in the three oaks, whereas there was a negative correlation between gmCO2 with LMA in Q. pubescens. Interestingly, two deciduous oaks showed a weak or no significant correlation between gsCO2 and ABA under high O3 and WD due to impaired stomatal physiological behaviour, indicating that the reduction of PN was related to gmCO2 rather than gsCO2 . The results suggest that gmCO2 plays an important role in plant carbon gain under concurrent increases in the severity of drought and O3 pollution.


Subject(s)
Ozone , Quercus , Droughts , Ozone/pharmacology , Photosynthesis/physiology , Plant Leaves/physiology , Quercus/physiology
9.
Oecologia ; 197(4): 867-883, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33515295

ABSTRACT

Stomata are central players in the hydrological and carbon cycles, regulating the uptake of carbon dioxide (CO2) for photosynthesis and transpirative loss of water (H2O) between plants and the atmosphere. The necessity to balance water-loss and CO2-uptake has played a key role in the evolution of plants, and is increasingly important in a hotter and drier world. The conductance of CO2 and water vapour across the leaf surface is determined by epidermal and stomatal morphology (the number, size, and spacing of stomatal pores) and stomatal physiology (the regulation of stomatal pore aperture in response to environmental conditions). The proportion of the epidermis allocated to stomata and the evolution of amphistomaty are linked to the physiological function of stomata. Moreover, the relationship between stomatal density and [CO2] is mediated by physiological stomatal behaviour; species with less responsive stomata to light and [CO2] are most likely to adjust stomatal initiation. These differences in the sensitivity of the stomatal density-[CO2] relationship between species influence the efficacy of the 'stomatal method' that is widely used to infer the palaeo-atmospheric [CO2] in which fossil leaves developed. Many studies have investigated stomatal physiology or morphology in isolation, which may result in the loss of the 'overall picture' as these traits operate in a coordinated manner to produce distinct mechanisms for stomatal control. Consideration of the interaction between stomatal morphology and physiology is critical to our understanding of plant evolutionary history, plant responses to on-going climate change and the production of more efficient and climate-resilient food and bio-fuel crops.


Subject(s)
Photosynthesis , Plant Stomata , Atmosphere , Carbon Dioxide , Plant Leaves
10.
Physiol Plant ; 170(2): 172-186, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32394437

ABSTRACT

Mesophyll conductance (Gm ) is one of the most important factors determining photosynthesis. Tropospheric ozone (O3 ) is known to accelerate leaf senescence and causes a decline of photosynthetic activity in leaves. However, the effects of age-related variation of O3 on Gm have not been well investigated, and we, therefore, analysed leaf gas exchange data in a free-air O3 exposure experiment on Siebold's beech with two levels (ambient and elevated O3 : 28 and 62 nmol mol-1 as daylight average, respectively). In addition, we examined whether O3 -induced changes on leaf morphology (leaf mass per area, leaf density and leaf thickness) may affect CO2 diffusion inside leaves. We found that O3 damaged the photosynthetic biochemistry progressively during the growing season. The Gm was associated with a reduced photosynthesis in O3 -fumigated Siebold's beech in August. The O3 -induced reduction of Gm was negatively correlated with leaf density, which was increased by elevated O3 , suggesting that the reduction of Gm was accompanied by changes in the physical structure of mesophyll cells. On the other hand, in October, the O3 -induced decrease of Gm was diminished because Gm decreased due to leaf senescence regardless of O3 treatment. The reduction of photosynthesis in senescent leaves after O3 exposure was mainly due to a decrease of maximum carboxylation rate (Vcmax ) and/or maximum electron transport rate (Jmax ) rather than diffusive limitations to CO2 transport such as Gm . A leaf age×O3 interaction of photosynthetic response will be a key for modelling photosynthesis in O3 -polluted environments.


Subject(s)
Fagus , Ozone/pharmacology , Carbon Dioxide , Mesophyll Cells , Photosynthesis , Plant Leaves
11.
Int J Mol Sci ; 21(4)2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32059382

ABSTRACT

Conductance of CO2 across the mesophyll (Gm) frequently constrains photosynthesis (PN) but cannot be measured directly. We examined Gm of cherry (Prunus avium L.) subjected to severe drought using the variable J method and carbon-isotopic composition (δ13C) of sugars from the centre of the leaf, the leaf petiole sap, and sap from the largest branch. Depending upon the location of the plant from which sugars are sampled, Gm may be estimated over scales ranging from a portion of the leaf to a canopy of leaves. Both the variable J and δ13C of sugars methods showed a reduction in Gm as soil water availability declined. The δ13C of sugars further from the source of their synthesis within the leaf did not correspond as closely to the diffusive and C-isotopic discrimination conditions reflected in the instantaneous measurement of gas exchange and chlorophyll-fluorescence utilised by the variable J approach. Post-photosynthetic fractionation processes and/or the release of sugars from stored carbohydrates (previously fixed under different environmental and C-isotopic discrimination conditions) may reduce the efficacy of the δ13C of sugars from leaf petiole and branch sap in estimating Gm in a short-term study. Consideration should be given to the spatial and temporal scales at which Gm is under observation in any experimental analysis.


Subject(s)
Carbon Isotopes/metabolism , Droughts , Mesophyll Cells/metabolism , Plant Leaves/metabolism , Prunus avium/metabolism , Sugars/metabolism , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Chlorophyll/metabolism , Models, Biological , Photosynthesis/physiology , Soil , Sugars/chemistry , Water
12.
Health Res Policy Syst ; 18(1): 9, 2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31973725

ABSTRACT

BACKGROUND: A major review of Victoria's ambulance services identified the need to improve public awareness of the role of ambulances as an emergency service. A communications campaign was developed to address this challenge. This research paper expands on an initial evaluation of the campaign by focusing on the long-term behavioural outcomes. METHODS: The behavioural evaluation involved two types of data collection - administrative data (routine collection from various health services) and survey data (cross-sectional community-wide surveys to measure behavioural intentions). RESULTS: Behavioural intentions for accessing two of the targeted non-emergency services increased after the second phase of the campaign commenced. There was also a significant change in the slope of call trends for emergency ambulances. This decrease is also likely attributed to the second phase of the campaign as significant level effects were identified 3 and 9 months after it commenced. CONCLUSIONS: A long-term campaign developed through evidence review, stakeholder consultation and behavioural theory was successful in reducing the number of daily calls requesting an emergency ambulance in Victoria and in increasing intentions to use alternative services. This research highlights the importance of collaborative intervention design along with the importance of implementing a robust monitoring and evaluation framework.


Subject(s)
Ambulances/statistics & numerical data , Awareness , Emergency Medical Services/statistics & numerical data , Health Education/organization & administration , Adult , Aged , Cross-Sectional Studies , Female , Health Knowledge, Attitudes, Practice , Humans , Male , Mass Media , Middle Aged , Residence Characteristics , Victoria
13.
Front Plant Sci ; 10: 1125, 2019.
Article in English | MEDLINE | ID: mdl-31608085

ABSTRACT

The Mediterranean climate is characterized by hot dry summers and frequent droughts. Mediterranean crops are frequently subjected to high evapotranspiration demands, soil water deficits, high temperatures, and photo-oxidative stress. These conditions will become more severe due to global warming which poses major challenges to the sustainability of the agricultural sector in Mediterranean countries. Selection of crop varieties adapted to future climatic conditions and more tolerant to extreme climatic events is urgently required. Plant phenotyping is a crucial approach to address these challenges. High-throughput plant phenotyping (HTPP) helps to monitor the performance of improved genotypes and is one of the most effective strategies to improve the sustainability of agricultural production. In spite of the remarkable progress in basic knowledge and technology of plant phenotyping, there are still several practical, financial, and political constraints to implement HTPP approaches in field and controlled conditions across the Mediterranean. The European panorama of phenotyping is heterogeneous and integration of phenotyping data across different scales and translation of "phytotron research" to the field, and from model species to crops, remain major challenges. Moreover, solutions specifically tailored to Mediterranean agriculture (e.g., crops and environmental stresses) are in high demand, as the region is vulnerable to climate change and to desertification processes. The specific phenotyping requirements of Mediterranean crops have not yet been fully identified. The high cost of HTPP infrastructures is a major limiting factor, though the limited availability of skilled personnel may also impair its implementation in Mediterranean countries. We propose that the lack of suitable phenotyping infrastructures is hindering the development of new Mediterranean agricultural varieties and will negatively affect future competitiveness of the agricultural sector. We provide an overview of the heterogeneous panorama of phenotyping within Mediterranean countries, describing the state of the art of agricultural production, breeding initiatives, and phenotyping capabilities in five countries: Italy, Greece, Portugal, Spain, and Turkey. We characterize some of the main impediments for development of plant phenotyping in those countries and identify strategies to overcome barriers and maximize the benefits of phenotyping and modeling approaches to Mediterranean agriculture and related sustainability.

14.
Ann Bot ; 124(4): 627-644, 2019 10 29.
Article in English | MEDLINE | ID: mdl-30715123

ABSTRACT

BACKGROUND AND AIMS: Hydraulic and chemical signals operate in tandem to regulate systemic plant responses to drought. Transport of abscisic acid (ABA) through the xylem and phloem from the root to shoot has been suggested to serve as the main signal of water deficit. There is evidence that ABA and its ABA-glycosyl-ester (ABA-GE) are also formed in leaves and stems through the chloroplastic 2-C-methylerythritol-5-phosphate (MEP) pathway. This study aimed to evaluate how hormonal and hydraulic signals contribute to optimize stomatal (gs), mesophyll (gm) and leaf hydraulic (Kleaf) conductance under well-watered and water-stressed conditions in Populus nigra (black poplar) plants. In addition, we assessed possible relationships between ABA and soluble carbohydrates within the leaf and stem. METHODS: Plants were subjected to three water treatments: well-watered (WW), moderate stress (WS1) and severe stress (WS2). This experimental set-up enabled a time-course analysis of the response to water deficit at the physiological [leaf gas exchange, plant water relations, (Kleaf)], biochemical (ABA and its metabolite/catabolite quantification in xylem sap, leaves, wood, bark and roots) and molecular (gene expression of ABA biosynthesis) levels. KEY RESULTS: Our results showed strong coordination between gs, gm and Kleaf under water stress, which reduced transpiration and increased intrinsic water use efficiency (WUEint). Analysis of gene expression of 9-cis-epoxycarotenoid dioxygenase (NCED) and ABA content in different tissues showed a general up-regulation of the biosynthesis of this hormone and its finely-tuned catabolism in response to water stress. Significant linear relationships were found between soluble carbohydrates and ABA contents in both leaves and stems, suggesting a putative function for this hormone in carbohydrate mobilization under severe water stress. CONCLUSIONS: This study demonstrates the tight regulation of the photosynthetic machinery by levels of ABA in different plants organs on a daily basis in both well-watered and water stress conditions to optimize WUEint and coordinate whole plant acclimation responses to drought.


Subject(s)
Abscisic Acid , Populus , Carbohydrates , Carbon Cycle , Dehydration , Humans , Plant Leaves , Plant Roots , Plant Stomata , Plant Transpiration , Water
15.
Sci Total Environ ; 656: 589-597, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30529963

ABSTRACT

Plants are exposed to a broad range of environmental stresses, such as salinity and ozone (O3), and survive due to their ability to adjust their metabolism. The aim of this study was to evaluate the physiological and biochemical adjustments adopted by pomegranate (Punica granatum L. cv. Dente di cavallo) under realistic field conditions. One-year-old saplings were exposed to O3 [two levels denoted as ambient (AO) and elevated (EO) O3 concentrations] and salinity [S (salt, 50 mM NaCl)] for three consecutive months. No salt (NS) plants received distilled water. Despite the accumulation of Na+ and Cl- in the aboveground biomass, no evidence of visible injury due to salt (e.g. tip yellow-brown lesions) was found. The maintenance of leaf water status (i.e. unchanged values of electrolytic leakage and relative water content), the significant increase of abscisic acid, proline and starch content (+98, +65 and +59% compared to AO_NS) and stomatal closure (-24%) are suggested to act as adaptive mechanisms against salt stress in AO_S plants. By contrast, EO_NS plants were unable to protect cells against the negative impact of O3, as confirmed by the reduction of the CO2 assimilation rate (-21%), accumulation of reactive oxygen species (+10 and +225% of superoxide anion and hydrogen peroxide) and malondialdehyde by-product (about 2-fold higher than AO_NS). Plants tried to preserve themselves from further oxidative damage by adopting some biochemical adjustments [i.e. increase in proline content (+41%) and induction of catalase activity (8-fold higher than in AO_NS)]. The interaction of the two stressors induced responses considerably different to those observed when each stressor was applied independently. An analysis of the antioxidant pool revealed that the biochemical adjustments adopted by P. granatum under EO_S conditions (e.g. reduction of total ascorbate; increased activities of superoxide dismutase and catalase) were not sufficient to ameliorate the O3-induced oxidative stress.


Subject(s)
Air Pollutants/adverse effects , Lythraceae/physiology , Ozone/adverse effects , Salt Stress/physiology , Adaptation, Physiological , Stress, Physiological
16.
Ann Bot ; 124(4): 567-580, 2019 10 29.
Article in English | MEDLINE | ID: mdl-30566593

ABSTRACT

BACKGROUND AND AIMS: The development of Arundo donax as a biomass crop for use on drought-prone marginal lands in areas with warm to hot climates is constrained by the lack of variation within this species. We investigated the effect of morphological and physiological variation on growth and tolerance to drought under field conditions in three ecotypes of A. donax collected from habitats representing a climate gradient: a pre-desert in Morocco, a semi-arid Mediterranean climate in southern Italy and a warm sub-humid region of central Italy. METHODS: The three A. donax ecotypes were grown under irrigated and rain-fed conditions in a common garden field trial in a region with a semi-arid Mediterranean climate. Physiological and morphological characteristics, and carbohydrate metabolism of the ecotypes were recorded to establish which traits were associated with yield and/or drought tolerance. KEY RESULTS: Variation was observed between the A. donax ecotypes. The ecotype from the most arid habitat produced the highest biomass yield. Stem height and the retention of photosynthetic capacity later in the year were key traits associated with differences in biomass yield. The downregulation of photosynthetic capacity was not associated with changes in foliar concentrations of sugars or starch. Rain-fed plants maintained photosynthesis and growth later in the year compared with irrigated plants that began to senescence earlier, thus minimizing the difference in yield. Effective stomatal control prevented excessive water loss, and the emission of isoprene stabilized photosynthetic membranes under drought and heat stress in A. donax plants grown under rain-fed conditions without supplementary irrigation. CONCLUSIONS: Arundo donax is well adapted to cultivation in drought-prone areas with warm to hot climates. None of the A. donax ecotypes exhibited all of the desired traits consistent with an 'ideotype'. Breeding or genetic (identification of quantitative trait loci) improvement of A. donax should select ecotypes on the basis of stem morphology and the retention of photosynthetic capacity.


Subject(s)
Droughts , Photosynthesis , Italy , Poaceae , Seasons
17.
Plants (Basel) ; 7(4)2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30241389

ABSTRACT

Heat waves are predicted to increase in frequency and duration in many regions as global temperatures rise. These transient increases in temperature above normal average values will have pronounced impacts upon the photosynthetic and stomatal physiology of plants. During the summer of 2017, much of the Mediterranean experienced a severe heat wave. Here, we report photosynthetic leaf gas exchange and chlorophyll fluorescence parameters of olive (Olea europaea cv. Leccino) grown under water deficit and full irrigation over the course of the heat wave as midday temperatures rose over 40 °C in Central Italy. Heat stress induced a decline in the photosynthetic capacity of the olives consistent with reduced ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity. Damage to photosystem II was more apparent in plants subject to water deficit. In contrast to previous studies, higher temperatures induced reductions in stomatal conductance. Heat stress adversely affected the carbon efficiency of olive. The selection of olive varieties with enhanced tolerance to heat stress and/or strategies to mitigate the impact of higher temperatures will become increasingly important in developing sustainable agriculture in the Mediterranean as global temperatures rise.

18.
Sci Rep ; 8(1): 8661, 2018 May 31.
Article in English | MEDLINE | ID: mdl-29849111

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

19.
Sci Rep ; 8(1): 6206, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29670149

ABSTRACT

Global warming events have coincided with turnover of plant species at intervals in Earth history. As mean global temperatures rise, the number, frequency and duration of heat-waves will increase. Ginkgo biloba was grown under controlled climatic conditions at two different day/night temperature regimes (25/20 °C and 35/30 °C) to investigate the impact of heat stress. Photosynthetic CO2-uptake and electron transport were reduced at the higher temperature, while rates of respiration were greater; suggesting that the carbon balance of the leaves was adversely affected. Stomatal conductance and the potential for evaporative cooling of the leaves was reduced at the higher temperature. Furthermore, the capacity of the leaves to dissipate excess energy was also reduced at 35/30 °C, indicating that photo-protective mechanisms were no longer functioning effectively. Leaf economics were adversely affected by heat stress, exhibiting an increase in leaf mass per area and leaf construction costs. This may be consistent with the selective pressures experienced by fossil Ginkgoales during intervals of global warming such as the Triassic - Jurassic boundary or Early Eocene Climatic Optimum. The physiological and morphological responses of the G. biloba leaves were closely interrelated; these relationships may be used to infer the leaf economics and photosynthetic/stress physiology of fossil plants.

20.
Plant Cell Environ ; 41(6): 1427-1437, 2018 06.
Article in English | MEDLINE | ID: mdl-29498070

ABSTRACT

The photosynthetic, optical, and morphological characteristics of a chlorophyll-deficient (Chl-deficient) "yellow" soybean mutant (MinnGold) were examined in comparison with 2 green varieties (MN0095 and Eiko). Despite the large difference in Chl content, similar leaf photosynthesis rates were maintained in the Chl-deficient mutant by offsetting the reduced absorption of red photons by a small increase in photochemical efficiency and lower non-photochemical quenching. When grown in the field, at full canopy cover, the mutants reflected a significantly larger proportion of incoming shortwave radiation, but the total canopy light absorption was only slightly reduced, most likely due to a deeper penetration of light into the canopy space. As a consequence, canopy-scale gross primary production and ecosystem respiration were comparable between the Chl-deficient mutant and the green variety. However, total biomass production was lower in the mutant, which indicates that processes other than steady state photosynthesis caused a reduction in biomass accumulation over time. Analysis of non-photochemical quenching relaxation and gas exchange in Chl-deficient and green leaves after transitions from high to low light conditions suggested that dynamic photosynthesis might be responsible for the reduced biomass production in the Chl-deficient mutant under field conditions.


Subject(s)
Chlorophyll/deficiency , Glycine max/genetics , Glycine max/physiology , Mutation/genetics , Photosynthesis , Plant Leaves/physiology , Biomass , Carbon Dioxide/metabolism , Oxygen/metabolism , Photons , Photosystem II Protein Complex/metabolism , Plant Transpiration , Glycine max/growth & development , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...