Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
BMC Cardiovasc Disord ; 23(1): 311, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37340361

ABSTRACT

BACKGROUND: The CREST model is a prediction model, quantitating the risk of circulatory-etiology death (CED) after cardiac arrest based on variables available at hospital admission, and intend to guide the triage of comatose patients without ST-segment-elevation myocardial infarction after successful cardiopulmonary resuscitation. This study assessed performance of the CREST model in the Target Temperature Management (TTM) trial cohort. METHODS: We retrospectively analyzed data from resuscitated out-of-hospital cardiac arrest (OHCA) patients in the TTM-trial. Demographics, clinical characteristics, and CREST variables (history of coronary artery disease, initial heart rhythm, initial ejection fraction, shock at admission and ischemic time > 25 min) were assessed in univariate and multivariable analysis. The primary outcome was CED. The discriminatory power of the logistic regression model was assessed using the C-statistic and goodness of fit was tested according to Hosmer-Lemeshow. RESULTS: Among 329 patients eligible for final analysis, 71 (22%) had CED. History of ischemic heart disease, previous arrhythmia, older age, initial non-shockable rhythm, shock at admission, ischemic time > 25 min and severe left ventricular dysfunction were variables associated with CED in univariate analysis. CREST variables were entered into a logistic regression model and the area under the curve for the model was 0.73 with adequate calibration according to Hosmer-Lemeshow test (p = 0.602). CONCLUSIONS: The CREST model had good validity and a discrimination capability for predicting circulatory-etiology death after resuscitation from cardiac arrest without ST-segment elevation myocardial infarction. Application of this model could help to triage high-risk patients for transfer to specialized cardiac centers.


Subject(s)
Cardiopulmonary Resuscitation , Coronary Artery Disease , Out-of-Hospital Cardiac Arrest , ST Elevation Myocardial Infarction , Humans , Out-of-Hospital Cardiac Arrest/diagnosis , Out-of-Hospital Cardiac Arrest/therapy , Out-of-Hospital Cardiac Arrest/etiology , Retrospective Studies , Cardiopulmonary Resuscitation/adverse effects , Coronary Artery Disease/complications , ST Elevation Myocardial Infarction/diagnosis , ST Elevation Myocardial Infarction/therapy , ST Elevation Myocardial Infarction/complications
2.
Neurocrit Care ; 38(1): 16-25, 2023 02.
Article in English | MEDLINE | ID: mdl-35896768

ABSTRACT

BACKGROUND: Sedation and analgesia are recommended during targeted temperature management (TTM) after cardiac arrest, but there are few data to provide guidance on dosing to bedside clinicians. We evaluated differences in patient-level sedation and analgesia dosing in an international multicenter TTM trial to better characterize current practice and clinically important outcomes. METHODS: A total 950 patients in the international TTM trial were randomly assigned to a TTM of 33 °C or 36 °C after resuscitation from cardiac arrest in 36 intensive care units. We recorded cumulative doses of sedative and analgesic drugs at 12, 24, and 48 h and normalized to midazolam and fentanyl equivalents. We compared number of medications used, dosing, and titration among centers by using multivariable models, including common severity of illness factors. We also compared dosing with time to awakening, incidence of clinical seizures, and survival. RESULTS: A total of 614 patients at 18 centers were analyzed. Propofol (70%) and fentanyl (51%) were most frequently used. The average dosages of midazolam and fentanyl equivalents were 0.13 (0.07, 0.22) mg/kg/h and 1.16 (0.49, 1.81) µg/kg/h, respectively. There were significant differences in number of medications (p < 0.001), average dosages (p < 0.001), and titration at all time points between centers (p < 0.001), and the outcomes of patients in these centers were associated with all parameters described in the multivariate analysis, except for a difference in the titration of sedatives between 12 and 24 h (p = 0.40). There were associations between higher dosing at 48 h (p = 0.003, odds ratio [OR] 1.75) and increased titration of analgesics between 24 and 48 h (p = 0.005, OR 4.89) with awakening after 5 days, increased titration of sedatives between 24 and 48 h with awakening after 5 days (p < 0.001, OR > 100), and increased titration of sedatives between 24 and 48 h with a higher incidence of clinical seizures in the multivariate analysis (p = 0.04, OR 240). There were also significant associations between decreased titration of analgesics and survival at 6 months in the multivariate analysis (p = 0.048). CONCLUSIONS: There is significant variation in choice of drug, dosing, and titration when providing sedation and analgesics between centers. Sedation and analgesia dosing and titration were associated with delayed awakening, incidence of clinical seizures, and survival, but the causal relation of these findings cannot be proven.


Subject(s)
Analgesia , Heart Arrest , Hypothermia, Induced , Humans , Midazolam/adverse effects , Hypnotics and Sedatives , Fentanyl/adverse effects , Analgesics , Heart Arrest/therapy
3.
Crit Care ; 26(1): 231, 2022 07 31.
Article in English | MEDLINE | ID: mdl-35909163

ABSTRACT

BACKGROUND: Targeted temperature management at 33 °C (TTM33) has been employed in effort to mitigate brain injury in unconscious survivors of out-of-hospital cardiac arrest (OHCA). Current guidelines recommend prevention of fever, not excluding TTM33. The main objective of this study was to investigate if TTM33 is associated with mortality in patients with vasopressor support on admission after OHCA. METHODS: We performed a post hoc analysis of patients included in the TTM-2 trial, an international, multicenter trial, investigating outcomes in unconscious adult OHCA patients randomized to TTM33 versus normothermia. Patients were grouped according to level of circulatory support on admission: (1) no-vasopressor support, mean arterial blood pressure (MAP) ≥ 70 mmHg; (2) moderate-vasopressor support MAP < 70 mmHg or any dose of dopamine/dobutamine or noradrenaline/adrenaline dose ≤ 0.25 µg/kg/min; and (3) high-vasopressor support, noradrenaline/adrenaline dose > 0.25 µg/kg/min. Hazard ratios with TTM33 were calculated for all-cause 180-day mortality in these groups. RESULTS: The TTM-2 trial enrolled 1900 patients. Data on primary outcome were available for 1850 patients, with 662, 896, and 292 patients in the, no-, moderate-, or high-vasopressor support groups, respectively. Hazard ratio for 180-day mortality was 1.04 [98.3% CI 0.78-1.39] in the no-, 1.22 [98.3% CI 0.97-1.53] in the moderate-, and 0.97 [98.3% CI 0.68-1.38] in the high-vasopressor support groups with regard to TTM33. Results were consistent in an imputed, adjusted sensitivity analysis. CONCLUSIONS: In this exploratory analysis, temperature control at 33 °C after OHCA, compared to normothermia, was not associated with higher incidence of death in patients stratified according to vasopressor support on admission. Trial registration Clinical trials identifier NCT02908308 , registered September 20, 2016.


Subject(s)
Cardiopulmonary Resuscitation , Hypothermia, Induced , Out-of-Hospital Cardiac Arrest , Adult , Cardiopulmonary Resuscitation/methods , Epinephrine/therapeutic use , Humans , Hypothermia, Induced/methods , Norepinephrine/therapeutic use , Out-of-Hospital Cardiac Arrest/drug therapy , Temperature , Vasoconstrictor Agents/therapeutic use
4.
Scand J Trauma Resusc Emerg Med ; 28(1): 67, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32664989

ABSTRACT

BACKGROUND: Exposure to extreme arterial partial pressures of oxygen (PaO2) and carbon dioxide (PaCO2) following the return of spontaneous circulation (ROSC) after out-of-hospital cardiac arrest (OHCA) is common and may affect neurological outcome but results of previous studies are conflicting. METHODS: Exploratory study of the International Cardiac Arrest Registry (INTCAR) 2.0 database, including 2162 OHCA patients with ROSC in 22 intensive care units in North America and Europe. We tested the hypothesis that exposure to extreme PaO2 or PaCO2 values within 24 h after OHCA is associated with poor neurological outcome at discharge. Our primary analyses investigated the association between extreme PaO2 and PaCO2 values, defined as hyperoxemia (PaO2 > 40 kPa), hypoxemia (PaO2 < 8.0 kPa), hypercapnemia (PaCO2 > 6.7 kPa) and hypocapnemia (PaCO2 < 4.0 kPa) and neurological outcome. The secondary analyses tested the association between the exposure combinations of PaO2 > 40 kPa with PaCO2 < 4.0 kPa and PaO2 8.0-40 kPa with PaCO2 > 6.7 kPa and neurological outcome. To define a cut point for the onset of poor neurological outcome, we tested a model with increasing and decreasing PaO2 levels and decreasing PaCO2 levels. Cerebral Performance Category (CPC), dichotomized to good (CPC 1-2) and poor (CPC 3-5) was used as outcome measure. RESULTS: Of 2135 patients eligible for analysis, 700 were exposed to hyperoxemia or hypoxemia and 1128 to hypercapnemia or hypocapnemia. Our primary analyses did not reveal significant associations between exposure to extreme PaO2 or PaCO2 values and neurological outcome (P = 0.13-0.49). Our secondary analyses showed no significant associations between combinations of PaO2 and PaCO2 and neurological outcome (P = 0.11-0.86). There was no PaO2 or PaCO2 level significantly associated with poor neurological outcome. All analyses were adjusted for relevant co-variates. CONCLUSIONS: Exposure to extreme PaO2 or PaCO2 values in the first 24 h after OHCA was common, but not independently associated with neurological outcome at discharge.


Subject(s)
Arterial Pressure/physiology , Carbon Dioxide/analysis , Cardiopulmonary Resuscitation/methods , Hypercapnia/diagnosis , Out-of-Hospital Cardiac Arrest/therapy , Oxygen/analysis , Registries , Aged , Blood Gas Analysis/methods , Europe , Female , Humans , Hypercapnia/etiology , Hypercapnia/metabolism , Intensive Care Units , Male , Middle Aged , Out-of-Hospital Cardiac Arrest/complications , Out-of-Hospital Cardiac Arrest/metabolism , Partial Pressure
SELECTION OF CITATIONS
SEARCH DETAIL