Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 417
Filter
1.
J Colloid Interface Sci ; 633: 120-131, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36436346

ABSTRACT

The design and construction of state-of-the-art wearable thermoelectric materials are important for the development of self-powered wearable thermoelectric generators (WTEGs). Molybdenum disulfide (MoS2) has been reported as a noteworthy thermoelectric (TE) material because of its large intrinsic bandgap and high carrier mobility. In this work, Cu-doped two-dimensional layered MoS2 nanosheets were grown on carbon fabric (CF) via a hydrothermal method. The electrical conductivity, Seebeck coefficient, and power factor for the Cu-doped MoS2 were found to increase with increasing temperature. The maximum Seebeck coefficient was obtained for a MoS2 sample doped with 4 at% of Cu (CM4) was ∼10 µV/K at 303 K and ∼13 µV/K at 373 K. The enhancement in the Seebeck coefficient was attributed to an energy-filtering effect caused by the interfacial barrier between MoS2 and Cu. In addition, a thermoelectric device was designed with four pairs of TE materials, where CM4 (4 at%) was used as a p-type material and Cu wire was used as an n-type material. These p- and n-type materials were connected electrically in series and thermally in parallel to generate a voltage of 190.7 µV at a temperature gradient of 8 K.

2.
Chemosphere ; 288(Pt 1): 132236, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34649090

ABSTRACT

Hierarchical orderd macroporous TiO2 architecture (HOMTA) was prepared with aid of ethylenediamine (EDA) and investigated the impact of amine molecules on the properties of TiO2 architecture. The different variation of amine molecules (EDA) leads to tunning the morphology under hydrothermal approach which is confirmed by FESEM and TEM analysis. The XRD and Raman studies confirms the crystal structure of anatase and brookite phase of TiO2. The surface of the architecture strongly depended on the concentration of EDA which plays a vital role in surface area which is revealed by Brunauer Emmett-Teller (BET) analysis. The obtained HOMTA was employed as photocatalyst and active photoanode in the dye sensitized solar cells (DSSC). The DSSC device exhibits excellent efficiency (η) of 5.27% for the EDA capped TiO2 (S5) which had high surface area (167.11 m2/g) for better dye loading, whereas the lower concentration of EDA capped TiO2 (S1, S2, S3 and S4) resulted the efficiency of 2.14, 3.90, 3.25 and 4.37%, respectively. The efficiency of photocatlysis degradation of the prepared samples (S1, S2, S3, S4 and S5) was 94.8, 90.47, 91.41, 91.32 and 93.75% under light source. The excellent photocatalysis property was achieved by S5 within 6 min due to high surface area which inducing more active site.


Subject(s)
Environmental Restoration and Remediation , Titanium , Coloring Agents , Sunlight
3.
J Colloid Interface Sci ; 584: 295-309, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33069028

ABSTRACT

The hybrid of organic conducting polymers and inorganic materials with ultralow thermal conductivity, which is a promising strategy for the realization of polymer based effective thermoelectric (TE) applications. In this work, ultrathin layered molybdenum disulphide (MoS2) nanosheets/PANI nanocomposites are prepared by hydrothermal route. The effect of varying PANI wt% in the nanocomposites and its interface effect on thermoelectric properties are well investigated. The successful incorporation of PANI between the MoS2 layers confirmed by high resolution transmission electron microscope (HRTEM). The significantly enhanced potential difference of MoS2/ PANI nanocomposites with increasing PANI content is well clarified by the increased Seebeck value. The variable range hopping property is identified and conductivity is raised up highly due to insertion of PANI in layered van der Waal's gap of MoS2. The effective interface facilitates charge for fast transport. The reduced thermal conductivity is observed of about 0.248 W*m-1*K-1 for 2.5 wt% addition of PANI. The key factor is that the stability of the sample is improved for MoS2/ PANI nanocomposites than pristine MoS2. Our work paved a new approach to improve TE performance by preparing TE MoS2 material through simple chemical route.

4.
Mater Sci Eng C Mater Biol Appl ; 108: 110457, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31924033

ABSTRACT

Titanium dioxide nanoparticles exhibit good anticancer and antibacterial activities. They are known to be environmentally friendly and stable, less toxic and excellent biocompatibility nature. In this paper we report the biological properties of pure TiO2 nanoparticles modified with Withania somnifera (Ashwagandha), Eclipta prostrata (Karisalankanni) and Glycyrrhiza glabra (Athimathuram) for biological applications. X-ray diffraction results revealed the anatase nature of the samples. From the TEM analyses, it is observed that there is an increase in the particle size of the bio modified samples. UV results show the red shift for the bio modified samples when compared with the pure samples. The samples are then subjected to MTT assay to determine the cell viability. KB oral cancer cells are used for the determination of anticancer nature of the pure and bio modified nanoparticles. It is observed that Withania somnifera - Eclipta prostrate modified TiO2 nanoparticles exhibit excellent anticancer activities among other bio modified and pure samples. The samples are then examined for their antibacterial activities against three Gram-negative bacterial strains namely, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and two Gram-positive bacterial strains namely, Staphylococcus aureus and Streptococcus mutans. Among the modified and pure samples, Withania somnifera - Eclipta prostrata showed good antibacterial nature against Gram-positive and Gram-negative bacteria.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Bacteria/growth & development , Eclipta/chemistry , Glycyrrhiza/chemistry , Mouth Neoplasms , Nanoparticles/chemistry , Titanium/chemistry , Withania/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology
5.
Obes Sci Pract ; 4(1): 97-105, 2018 02.
Article in English | MEDLINE | ID: mdl-29479469

ABSTRACT

Objective: Previous work has shown that high body mass index (BMI) is associated with low grey matter volume. However, evidence on the relationship between waist circumference (WC) and brain volume is relatively scarce. Moreover, the influence of mild obesity (as indexed by WC and BMI) on brain volume remains unclear. This study explored the relationships between WC and BMI and grey matter volume in a large sample of Japanese adults. Methods: The participants were 792 community-dwelling adults (523 men and 269 women). Brain magnetic resonance images were collected, and the correlation between WC or BMI and global grey matter volume were analysed. The relationships between WC or BMI and regional grey matter volume were also investigated using voxel-based morphometry. Results: Global grey matter volume was not correlated with WC or BMI. Voxel-based morphometry analysis revealed significant negative correlations between both WC and BMI and regional grey matter volume. The areas correlated with each index were more widespread in men than in women. In women, the total area of the regions significantly correlated with WC was slightly greater than that of the regions significantly correlated with BMI. Conclusions: Results show that both WC and BMI were inversely related to regional grey matter volume, even in Japanese adults with somewhat mild obesity. Especially in populations with less obesity, such as the female participants in current study, WC may be more sensitive than BMI as a marker of grey matter volume differences associated with obesity.

6.
RSC Adv ; 8(47): 26664-26675, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-35541077

ABSTRACT

Edge-rich active sites of ultrathin layered molybdenum disulphide (MoS2) nanosheets were synthesized by a hydrothermal method. The effect of pH on the formation of MoS2 nanosheets and their photocatalytic response have been investigated. Structural and elemental analysis confirm the presence of S-Mo-S in the composition. Morphological analysis confirms the presence of ultrathin layered nanosheets with a sheet thickness of 10-28 nm at pH 1. The interplanar spacing of MoS2 layers is in good agreement with the X-ray diffraction and high-resolution transmission electron microscopy results. A comparative study of the photocatalytic performance for the degradation of methylene blue (MB) and rhodamine B (RhB) by ultrathin layered MoS2 under visible light irradiation was performed. The photocatalytic activity of the edge-rich ultrathin layered nanosheets showed a fast response time of 36 min with the degradation rate of 95.3% of MB and 41.1% of RhB. The photocatalytic degradation of MB was superior to that of RhB because of the excellent adsorption of MB than that of RhB. Photogenerated superoxide radicals were the key active species for the decomposition of organic compounds present in water, as evidenced by scavenger studies.

7.
J Nanosci Nanotechnol ; 16(6): 6185-92, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27427688

ABSTRACT

A novel amperometric sensor based on iron doped hydroxyapatite (Fe-HA) and multiwalled carbon nanotubes (CNT) composite immobilized on a glassy carbon electrode (GCE) has been fabricated. The hybrid composite made of Fe-HA nanoparticles and CNT promotes electron transfer kinetics between the analyte levodopa (L-dopa) and the modified GC electrode. Under optimum conditions, the fabricated sensor gave a linear response range of 1.0 x 10(-7)-1.1 x 10(-6) M with the detection limit as low as 62 nM. The Fe-HA/CNT modified electrode showed good selectivity towards the determination of L-dopa in the presence of ascorbic acid (AA), uric acid (UA) and other common interferents. The sensor displays a high sensitivity, good reproducibility and long-term stability and it was successfully applied for the detection of L-dopa in pharmaceutical and medicinal plant samples.


Subject(s)
Durapatite/chemistry , Electrochemistry/instrumentation , Iron/chemistry , Levodopa/analysis , Nanotubes, Carbon/chemistry , Uric Acid/chemistry , Catalysis , Electrodes , Glass/chemistry , Levodopa/chemistry , Limit of Detection , Mucuna/chemistry , Oxidation-Reduction
8.
Dalton Trans ; 45(6): 2637-46, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26732466

ABSTRACT

The two-dimensional (2D) transition metal dichalcogenide nanosheet-carbon composite is an attractive material for energy storage because of its high Faradaic activity, unique nanoconstruction and electronic properties. In this work, a facile one step preparation of a molybdenum disulfide (MoS2) nanosheet-graphene (MoS2/G) composite with the in situ reduction of graphene oxide is reported. The structure, morphology and composition of the pure MoS2 and composites were comparatively analyzed by various characterization techniques. The electrochemical performance of the pure MoS2, graphene oxide and the MoS2/G composite electrode materials was evaluated by cyclic voltammogram, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The MoS2/G composite showed a higher specific capacitance (270 F g(-1) at a current density of 0.1 A g(-1)) compared to the pure MoS2 (162 F g(-1)) in a neutral aqueous electrolyte. Moreover, the energy density of the composite electrode is also higher (12.5 Wh kg(-1)) with a high power density (2500 W kg(-1)) compared to the pure MoS2. In addition, the MoS2/G composite electrode showed excellent cyclic stability even after 1000 cycles. The enhancement in specific capacitance, excellent cyclic stability and high energy density of the composite electrode are mainly due to the interconnected conductive network of the composite as well as the synergetic effect of the pure MoS2 and graphene. The experimental results demonstrated that the MoS2/G composite is a promising electrode material for high-performance supercapacitors.

9.
ACS Appl Mater Interfaces ; 7(32): 17713-24, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26225901

ABSTRACT

The room temperature chemiresistive response of n-type ZnO nanowire (ZnO NWs) films modified with different thicknesses of p-type cobalt phthalocyanine (CoPc) has been studied. With increasing thickness of CoPc (>15 nm), heterojunction films exhibit a transition from n- to p-type conduction due to uniform coating of CoPc on ZnO. The heterojunction films prepared with a 25 nm thick CoPc layer exhibit the highest response (268% at 10 ppm of H2S) and the fastest response (26 s) among all samples. The X-ray photoelectron spectroscopy and work function measurements reveal that electron transfer takes place from ZnO to CoPc, resulting in formation of a p-n junction with a barrier height of 0.4 eV and a depletion layer width of ∼8.9 nm. The detailed XPS analysis suggests that these heterojunction films with 25 nm thick CoPc exhibit the least content of chemisorbed oxygen, enabling the direct interaction of H2S with the CoPc molecule, and therefore exhibit the fastest response. The improved response is attributed to the high susceptibility of the p-n junctions to the H2S gas, which manipulates the depletion layer width and controls the charge transport.

10.
Dalton Trans ; 44(22): 10490-8, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-25985020

ABSTRACT

Zinc oxide (ZnO) nanostructures were synthesized and their photocatalytic activity was evaluated using methylene blue (MB) as a model pollutant. Ethylenediamine (EDA) was used as a passivating agent to control the morphology and size of the ZnO nanostructures. In the absence of EDA, agglomerated ZnO nanoparticles were obtained. The addition of EDA at varying concentrations considerably influenced the morphological size. The as-prepared samples were extensively characterized using various techniques. The morphology- and size-dependent photocatalytic degradation of MB was studied under visible light irradiation. The maximum degradation efficiency was observed for ZnO nanoflakes; the MB-related absorbance peak completely disappeared after 15 min of irradiation. Furthermore, the effect of various photocatalytic reaction parameters, such as pH (3-12) of the solution, the concentration of the dye (5, 10, 15, and 20 ppm), and the dosage of the photocatalyst (25, 50, 75, and 100 mg L(-1)), on the photodegradation of MB was investigated to determine the maximum degradation efficiency. The optimum values of solution pH, dye concentration, and photocatalyst dosage were 11, 10 ppm, and 75 mg L(-1), respectively.

11.
Dalton Trans ; 44(21): 9901-8, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25940081

ABSTRACT

Graphene-ceria (CeO2G) nanocomposites were prepared by using a low-temperature solution process with different weight percentages of graphene, and their electrochemical properties were investigated. Structural properties of the nanocomposites were studied by X-ray diffraction, Raman spectroscopy, and FTIR spectral analyses. FE-SEM and HRTEM images revealed a "wrinkled paper"-like morphology of the prepared composites. Elemental mapping images were recorded by using the FE-EPMA technique. XPS analyses revealed the binding states of different elements present in the composites. The composite with 5% graphene displayed a specific capacitance of 110 F g(-1), according to cyclic voltammetric studies, which is higher than that observed for pure CeO2 (75 F g(-1)). The significant increase in the specific capacitance suggests that the CeO2G is a promising material for supercapacitor applications.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 145: 329-332, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25795606

ABSTRACT

Although 4-aminobenzophenone (4-ABP) is the best derivative of benzophenone with 260 times higher second harmonic generation (SHG) efficiency than potassium dihydrogen phosphate (KDP), growth of high quality bulk crystal still remains a difficult task. In the present work, the effect of solvents on solubility and growth aspects of 4-ABP was investigated to grow inclusion free 4-ABP crystals. The growth processes were discussed based on solute-solvent interaction in two different growth media of ethyl acetate and ethanol. The growth rate and thereby solvent inclusions are relatively higher in ethyl acetate grown crystal than the crystal grown from ethanol. The structural, thermal and optical properties of 4-ABP crystals were studied. The enthalpy of 4-ABP melting process was estimated from differential thermal analysis. The optical transmission study shows that 4-ABP crystals grown from ethanol has high transparency compared to ethyl acetate grown sample due to solvent inclusion in the later crystal.


Subject(s)
Aniline Compounds/chemistry , Benzophenones/chemistry , Lasers , Solvents/chemistry , Acetates/chemistry , Crystallization , Differential Thermal Analysis , Ethanol/chemistry , Optical Phenomena , Solubility , Spectroscopy, Fourier Transform Infrared , Temperature , Thermogravimetry , X-Ray Diffraction
13.
Dalton Trans ; 44(10): 4485-97, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25649630

ABSTRACT

Nanoflake-structured NiO were synthesized by a microwave assisted method without the use of additives. The cubic phase of NiO nanoparticles with increasing crystalline nature for higher microwave power is ascertained by X-ray diffraction studies. Previous reports revealed that hexagonally structured ß-Ni(OH)2 was completely transferred into the cubic phase of NiO around 350 °C, confirmed by using thermal analysis (TG/DTA). In our present work, the size and morphology of nanoparticles are ascertained from transmission electron microscopy (TEM) analysis. Flake-like morphology with uniform size, shape and less agglomerated structure formation is obtained for 900 and 600 W of microwave power used for the synthesis of NiO samples. The effect of microwave power used for the synthesis of NiO nanoflakes was analyzed by studying the magnetic and electrochemical behavior of NiO nanoflakes. Room temperature magnetic measurements revealed the small ferromagnetic nature of NiO nanoparticles. It was observed that the samples synthesized at higher microwave power exhibited divergence behavior below 300 K in FC and ZFC measurements, which results superparamagnetic behavior. An enhanced supercapacitor performance with higher specific capacitance values was determined for NiO nanoflake samples synthesized at (25)600 W and 900 W of microwave power.

14.
Colloids Surf B Biointerfaces ; 126: 407-13, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25601096

ABSTRACT

CdS nanoparticles are one among the most promising agents for fluorescent imaging. Hence, it is essential to develop new strategies to overcome the cytotoxicity of these nanoparticles. Surface modification is one of the simplest and effective techniques. This paper assesses the effect of surface modification on toxicity of the CdS nanoparticles. Unmodified CdS and surface-modified CdS nanoparticles were synthesized in an aqueous medium using a wet chemical route at room temperature. The surface modification of the CdS nanoparticles with polyvinylpyrrolidone (PVP) and cysteine was confirmed using infrared absorption studies. The diameters of unmodified CdS, PVP-modified CdS, and cysteine-modified CdS nanoparticles were determined using HRTEM. They exhibited luminescence in the range from 500 to 800 nm. The cytotoxic effects of these CdS nanoparticles were investigated in cultures of Vero cells. The results indicated that Vero cell viability was higher for the surface-modified CdS nanoparticles than for the unmodified CdS nanoparticles. The reduction in the toxicity was related to the nature of the capping agents used for the surface modification, and the particle size.


Subject(s)
Cadmium Compounds/chemistry , Cadmium Compounds/toxicity , Nanoparticles/chemistry , Nanoparticles/toxicity , Sulfides/chemistry , Sulfides/toxicity , Tetrazolium Salts/chemistry , Thiazoles/chemistry , Animals , Cadmium Compounds/chemical synthesis , Cell Survival/drug effects , Chlorocebus aethiops , Cysteine/chemistry , Dose-Response Relationship, Drug , Ligands , Particle Size , Povidone/chemistry , Structure-Activity Relationship , Sulfides/chemical synthesis , Surface Properties , Vero Cells
15.
J Neuroendocrinol ; 27(3): 187-97, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25582792

ABSTRACT

Kisspeptin, encoded by the Kiss1 gene, has attracted attention as a key candidate neuropeptide in controlling puberty and reproduction via regulation of gonadotrophin-releasing hormone (GnRH) secretion in mammals. Pioneer studies with Kiss1 or its cognate receptor Gpr54 knockout (KO) mice showed the indispensable role of kisspeptin-GPR54 signalling in the control of animal reproduction, although detailed analyses of gonadotrophin secretion, especially pulsatile and surge-mode of luteinising hormone (LH) secretion, were limited. Thus, in the present study, we have generated Kiss1 KO rats aiming to evaluate a key role of kisspeptin in governing reproduction via pulse and surge modes of GnRH/LH secretion. Kiss1 KO male and female rats showed a complete suppression of pulsatile LH secretion, which is responsible for folliculogenesis and spermatogenesis, and an absence of puberty and atrophic gonads. Kiss1 KO female rats showed no spontaneous LH/follicle-stimulating hormone surge and an oestrogen-induced LH surge, suggesting that the GnRH surge generation system, which is responsible for ovulation, does not function without kisspeptin. Furthermore, challenge of major stimulatory neurotransmitters, such as monosodium glutamate, NMDA and norepinephrine, failed to stimulate LH secretion in Kiss1 KO rats, albeit they stimulated LH release in wild-type controls. Taken together, the results of the present study confirm that kisspeptin plays an indispensable role in generating two modes (pulse and surge) of GnRH/gonadotrophin secretion to regulate puberty onset and normal reproductive performance. In addition, the present study suggests that kisspeptin neurones play a critical role as a hub integrating major stimulatory neural inputs to GnRH neurones, using newly established Kiss1 KO rats, which serve as a useful model for detailed analysis of hormonal profiles.


Subject(s)
Glutamic Acid/physiology , Kisspeptins/physiology , Luteinizing Hormone/metabolism , Sexual Maturation/physiology , Animals , Female , Follicle Stimulating Hormone/metabolism , Kisspeptins/genetics , Male , Mice, Knockout , N-Methylaspartate/physiology , Norepinephrine/physiology , Rats , Sexual Maturation/genetics
16.
NPJ Microgravity ; 1: 15011, 2015.
Article in English | MEDLINE | ID: mdl-28725715

ABSTRACT

BACKGROUND: In x Ga1-x Sb is an important material that has tunable properties in the infrared (IR) region and is suitable for IR-device applications. Since the quality of crystals relies on growth conditions, the growth process of alloy semiconductors can be examined better under microgravity (µG) conditions where convection is suppressed. AIMS: To investigate the dissolution and growth process of In x Ga1-x Sb alloy semiconductors via a sandwiched structure of GaSb(seed)/InSb/GaSb(feed) under normal and µG conditions. METHODS: In x Ga1-x Sb crystals were grown at the International Space Station (ISS) under µG conditions, and a similar experiment was conducted under terrestrial conditions (1G) using the vertical gradient freezing (VGF) method. The grown crystals were cut along the growth direction and its growth properties were studied. The indium composition and growth rate of grown crystals were calculated. RESULTS: The shape of the growth interface was nearly flat under µG, whereas under 1G, it was highly concave with the initial seed interface being nearly flat and having facets at the peripheries. The quality of the µG crystals was better than that of the 1G samples, as the etch pit density was low in the µG sample. The growth rate was higher under µG compared with 1G. Moreover, the growth started at the peripheries under 1G, whereas it started throughout the seed interface under µG. CONCLUSIONS: Kinetics played a dominant role under 1G. The suppressed convection under µG affected the dissolution and growth process of the In x Ga1-x Sb alloy semiconductor.

17.
ACS Appl Mater Interfaces ; 6(21): 18619-25, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25318103

ABSTRACT

In the present work, we report on the investigation of low-temperature (300-5 K) thermoelectric properties of hot-pressed TiSe2, a charge-density-wave (CDW) material. We demonstrate that, with increasing hot-pressing temperature, the density of TiSe2 increases and becomes nonstoichiometric owing to the loss of selenium. X-ray diffraction, scanning electron microscopy, and transimission electron microscopy results show that the material consists of a layered microstructure with several defects. Increasing the hot-press temperature in nonstoichiometric TiSe2 leads to a reduction of the resistivity and enhancement of the Seebeck coefficient in concomitent with suppression of CDW. Samples hot-pressed at 850 °C exhibited a minimum thermal conductivity (κ) of 1.5 W/m·K at 300 K that, in turn, resulted in a figure-of-merit (ZT) value of 0.14. This value is higher by 6 orders of magnitude compared to 1.49 × 10(-7) obtained for cold-pressed samples annealed at 850 °C. The enhancement of ZT in hot-pressed samples is attributed to (i) a reduced thermal conductivity owing to enhanced phonon scattering and (ii) improved power factor (α(2)σ).

18.
Dalton Trans ; 43(46): 17445-52, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25338309

ABSTRACT

Hierarchical structures of nickel sulfide have been grown by the hydrothermal method. Nickel nitrate hexahydrate and thiourea were used as precursor materials to synthesize nickel sulfide. Ethylenediaminetetraacetic acid was used as a capping agent to achieve monodispersity. The different phases of nickel sulfide and its dependency on the precursor concentration were analyzed by X-ray diffractometry. Transmission electron microscopy analysis was used to confirm the phase changes and morphological behavior of the synthesized material. The morphological evolution of the hierarchical structure formation was studied systematically by scanning electron microscopy. In this study, we explore a novel method to control the synthesis of nickel sulfide hierarchical structures by varying the precursor concentration. The two mixed phases enhanced the catalytic activity in the 4-nitro phenol reduction reaction.

19.
J Phys Condens Matter ; 26(44): 445002, 2014 Nov 05.
Article in English | MEDLINE | ID: mdl-25244149

ABSTRACT

In this paper we report the thermoelectric performance of Sr intercalated TiSe(2) above 300 K. Refined x-ray diffraction, high resolution transmission electron microscopy and scanning electron microscopy images show well oriented polycrystalline grains along a (0 0 l) direction and layered growth of the sample. Intercalation of Sr in TiSe(2) shows an improved Seebeck coefficient (α) value without altering the polarity of the majority charge carrier. A drastic reduction in the thermal conductivity (κ) from 3.8 W m K(-1) to 1.2 W m K(-1) (at 650 K) was observed which is ascribed to the: (i) scattering of the phonon by natural layer interfaces, grain boundaries and lattice defects and (ii) rattling of intercalated Sr atoms among weakly bound TiSe(2) layers. This led to the maximum ZT of ~0.08 at 650 K for Sr(x)TiSe(2) (x > 0.1) which is almost twice as high as the parent TiSe(2).

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 133: 396-402, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-24967545

ABSTRACT

Single crystals of l-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) have been grown successfully from the solution of l-arginine and 4-nitrophenol. Slow evaporation of solvent technique was adopted to grow the bulk single crystals. Single crystal X-ray diffraction analysis confirms the grown crystal has monoclinic crystal system with space group of P21. Powder X-ray diffraction analysis shows the good crystalline nature. The crystalline perfection of the grown single crystals was analyzed by HRXRD by employing a multicrystal X-ray diffractometer. The functional groups were identified from proton NMR spectroscopic analysis. Linear and nonlinear optical properties were determined by UV-Vis spectrophotometer and Kurtz powder technique respectively. It is found that the grown crystal has no absorption in the green wavelength region and the SHG efficiency was found to be 2.66 times that of the standard KDP. The Thermal stability of the crystal was found by obtaining TG/DTA curve. The mechanical behavior of the grown crystal has been studied by Vicker's microhardness method.


Subject(s)
Arginine/chemistry , Hydroxybenzoates/chemistry , Nitrophenols/chemistry , Crystallization , Crystallography, X-Ray , Differential Thermal Analysis , Hardness , Magnetic Resonance Spectroscopy , Models, Molecular , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...