Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37762371

ABSTRACT

Glioblastoma Multiforme (GBM) is the most aggressive form of malignant brain tumor. The median survival rate does not exceed two years, indicating an imminent need to develop novel therapies. The atypical adamantyl retinoid ST1926 induces apoptosis and growth inhibition in different cancer types. We have shown that ST1926 is an inhibitor of the catalytic subunit of DNA polymerase alpha (POLA1), which is involved in initiating DNA synthesis in eukaryotic cells. POLA1 levels are elevated in GBM versus normal brain tissues. Therefore, we studied the antitumor effects of ST1926 in several human GBM cell lines. We further explored the global protein expression profiles in GBM cell lines using liquid chromatography coupled with tandem mass spectrometry to identify new targets of ST1926. Low sub-micromolar concentrations of ST1926 potently decreased cell viability, induced cell damage and apoptosis, and reduced POLA1 protein levels in GBM cells. The proteomics profiles revealed 197 proteins significantly differentially altered upon ST1926 treatment of GBM cells involved in various cellular processes. We explored the differential gene and protein expression of significantly altered proteins in GBM compared to normal brain tissues.


Subject(s)
Glioblastoma , Humans , Glioblastoma/drug therapy , DNA Polymerase I , Proteomics , Cinnamates , Nucleic Acid Synthesis Inhibitors , Nucleotidyltransferases
2.
Cancers (Basel) ; 15(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37190196

ABSTRACT

Colorectal cancer (CRC) is one of the leading cancers and causes of death in patients. 5-fluorouracil (5-FU) is the therapy of choice for CRC, but it exhibits high toxicity and drug resistance. Tumorigenesis is characterized by a deregulated metabolism, which promotes cancer cell growth and survival. The pentose phosphate pathway (PPP) is required for the synthesis of ribonucleotides and the regulation of reactive oxygen species and is upregulated in CRC. Mannose was recently reported to halt tumor growth and impair the PPP. Mannose inhibitory effects on tumor growth are inversely related to the levels of phosphomannose isomerase (PMI). An in silico analysis showed low PMI levels in human CRC tissues. We, therefore, investigated the effect of mannose alone or in combination with 5-FU in human CRC cell lines with different p53 and 5-FU resistance statuses. Mannose resulted in a dose-dependent inhibition of cell growth and synergized with 5-FU treatment in all tested cancer cell lines. Mannose alone or in combination with 5-FU reduced the total dehydrogenase activity of key PPP enzymes, enhanced oxidative stress, and induced DNA damage in CRC cells. Importantly, single mannose or combination treatments with 5-FU were well tolerated and reduced tumor volumes in a mouse xenograft model. In summary, mannose alone or in combination with 5-FU may represent a novel therapeutic strategy in CRC.

3.
Curr Drug Deliv ; 20(9): 1314-1326, 2023.
Article in English | MEDLINE | ID: mdl-35950256

ABSTRACT

Retinoids represent a class of chemical compounds derived from or structurally and functionally related to vitamin A. Retinoids play crucial roles in regulating a range of crucial biological processes spanning embryonic development to adult life. These include regulation of cell proliferation, differentiation, and cell death. Due to their promising characteristics, retinoids emerged as potent anti-cancer agents, and their effects were validated in vitro and in vivo preclinical models of several solid and hematological malignancies. However, their clinical translation remained limited due to poor water solubility, photosensitivity, short half-life, and toxicity. The development of retinoid delivery formulations was extensively studied to overcome these limitations. This review will summarize some preclinical and commercial synthetic retinoids in cancer and discuss their different delivery systems.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Retinoids/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Vitamin A , Cell Differentiation
4.
Molecules ; 26(18)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34576952

ABSTRACT

Several sesquiterpene lactones (STLs) have been tested as lead drugs in cancer clinical trials. Salograviolide-A (Sal-A) and salograviolide-B (Sal-B) are two STLs that have been isolated from Centaurea ainetensis, an indigenous medicinal plant of the Middle Eastern region. The parent compounds Sal-A and Sal-B were modified and successfully prepared into eight novel guaianolide-type STLs (compounds 1-8) bearing ester groups of different geometries. Sal-A, Sal-B, and compounds 1-8 were tested against a human colorectal cancer cell line model with differing p53 status; HCT116 with wild-type p53 and HCT116 p53-/- null for p53, and the normal-like human colon mucosa cells with wild-type p53, NCM460. IC50 values indicated that derivatization of Sal-A and Sal-B resulted in potentiation of HCT116 cell growth inhibition by 97% and 66%, respectively. The effects of the different molecules on cancer cell growth were independent of p53 status. Interestingly, the derivatization of Sal-A and Sal-B molecules enhanced their anti-growth properties versus 5-Fluorouracil (5-FU), which is the drug of choice in colorectal cancer. Structure-activity analysis revealed that the enhanced molecule potencies were mainly attributed to the position and number of the hydroxy groups, the lipophilicity, and the superiority of ester groups over hydroxy substituents in terms of their branching and chain lengths. The favorable cytotoxicity and selectivity of the potent molecules, to cancer cells versus their normal counterparts, pointed them out as promising leads for anti-cancer drug design.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Colorectal Neoplasms/drug therapy , Heterocyclic Compounds, 3-Ring/chemistry , Antineoplastic Agents, Phytogenic/chemical synthesis , Centaurea/chemistry , Colorectal Neoplasms/pathology , Cysteine/chemistry , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Plants, Medicinal/chemistry , Structure-Activity Relationship
5.
Mol Carcinog ; 60(8): 567-581, 2021 08.
Article in English | MEDLINE | ID: mdl-34101920

ABSTRACT

The sesquiterpene lactone parthenolide is a major component of the feverfew medicinal plant, Tanacetum parthenium. Parthenolide has been extensively studied for its anti-inflammatory and anticancer properties in several tumor models. Parthenolide's antitumor activities depend on several mechanisms but it is mainly known as an inhibitor of the nuclear factor-κB (NF-κB) pathway. This pathway is constitutively activated and induces cell survival in primary effusion lymphoma (PEL), a rare aggressive AIDS-related lymphoproliferative disorder that is commonly caused by the human herpesvirus 8 (HHV-8) infection. The aim of this study is to evaluate the targeted effect of Parthenolide both in vitro and in vivo. Herein, parthenolide significantly inhibited cell growth, induced G0 /G1 cell cycle arrest, and induced massive apoptosis in PEL cells and ascites. In addition, parthenolide inhibited the NF-ĸB pathway suppressing IĸB phosphorylation and p65 nuclear translocation. It also reduced the expression of the DNA methylase inhibitor (DNMT1). Parthenolide induced HHV-8 lytic gene expression without inhibiting latent viral gene expression. Importantly, DMAPT, the more soluble parthenolide prodrug, promoted delay in ascites development and prolonged the survival of PEL xenograft mice. This study supports the therapeutic use of parthenolide in PEL and encourages its further clinical development.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Lymphoma, Primary Effusion/drug therapy , Sesquiterpenes/pharmacology , Animals , Apoptosis/drug effects , Biomarkers , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Disease Models, Animal , Disease Susceptibility , Drug Evaluation, Preclinical , Humans , Lymphoma, Primary Effusion/etiology , Lymphoma, Primary Effusion/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
6.
Mol Carcinog ; 58(7): 1208-1220, 2019 07.
Article in English | MEDLINE | ID: mdl-30883933

ABSTRACT

Retinoids are vitamin A derivatives that regulate crucial biological processes such as cellular proliferation, apoptosis, and differentiation. The use of natural retinoids in cancer therapy is limited due to their toxicity and the acquired resistance by cancer cells. Therefore, synthetic retinoids were developed, such as the atypical adamantyl retinoid ST1926 that provides enhanced bioavailability and reduced toxicity. We have assessed the in vitro and in vivo antitumor properties and mechanism of action of ST1926 in targeting cancer stem-like cells population of human prostate cancer (PCa) cell lines, DU145 and PC3, and mouse PCa cell lines, PLum-AD and PLum-AI. We demonstrated that ST1926 substantially reduced proliferation of PCa cells and induced cell cycle arrest, p53-independent apoptosis, and early DNA damage. It also decreased migration and invasion of PCa cells and significantly reduced prostate spheres formation ability in vitro denoting sufficient eradication of the self-renewal ability of the highly androgen-resistant cancer stem cells. Importantly, ST1926 potently inhibited PCa tumor growth and progression in vivo. Our results highlight the potential of ST1926 in PCa therapy and warrant its clinical development.


Subject(s)
Adamantane/analogs & derivatives , Antineoplastic Agents/pharmacology , Carcinogenesis/drug effects , Cinnamates/pharmacology , Neoplastic Stem Cells/drug effects , Prostatic Neoplasms/drug therapy , Retinoids/pharmacology , Adamantane/pharmacology , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , DNA Damage/drug effects , Humans , Male , Mice , Neoplasm Invasiveness/pathology , Prostate/pathology , Xenograft Model Antitumor Assays
7.
Mol Cancer Ther ; 16(10): 2047-2057, 2017 10.
Article in English | MEDLINE | ID: mdl-28619754

ABSTRACT

Acute myeloid leukemia (AML) is one of the most frequent types of blood malignancies. It is a complex disorder of undifferentiated hematopoietic progenitor cells. The majority of patients generally respond to intensive therapy. Nevertheless, relapse is the major cause of death in AML, warranting the need for novel treatment strategies. Retinoids have demonstrated potent differentiation and growth regulatory effects in normal, transformed, and hematopoietic progenitor cells. All-trans retinoic acid (ATRA) is the paradigm of treatment in acute promyelocytic leukemia, an AML subtype. The majority of AML subtypes are, however, resistant to ATRA. Multiple synthetic retinoids such as ST1926 recently emerged as potent anticancer agents to overcome such resistance. Despite its lack of toxicity, ST1926 clinical development was restricted due to its limited bioavailability and rapid excretion. Here, we investigate the preclinical efficacy of ST1926 and polymer-stabilized ST1926 nanoparticles (ST1926-NP) in AML models. We show that sub-µmol/L concentrations of ST1926 potently and selectively inhibited the growth of ATRA-resistant AML cell lines and primary blasts. ST1926 induced-growth arrest was due to early DNA damage and massive apoptosis in AML cells. To enhance the drug's bioavailability, ST1926-NP were developed using Flash NanoPrecipitation, and displayed comparable anti-growth activities to the naked drug in AML cells. In a murine AML xenograft model, ST1926 and ST1926-NP significantly prolonged survival and reduced tumor burden. Strikingly, in vivo ST1926-NP antitumor effects were achieved at four fold lower concentrations than the naked drug. These results highlight the promising use of ST1926 in AML therapy and encourage its further development. Mol Cancer Ther; 16(10); 2047-57. ©2017 AACR.


Subject(s)
Adamantane/analogs & derivatives , Cinnamates/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , Nanoparticles/administration & dosage , Tumor Burden/drug effects , Adamantane/administration & dosage , Adamantane/chemistry , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cinnamates/chemistry , DNA Damage/drug effects , Humans , Mice , Nanoparticles/chemistry , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...