Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Clin Biochem ; 60(4): 249-258, 2023 07.
Article in English | MEDLINE | ID: mdl-36750429

ABSTRACT

OBJECTIVE: Unique clinical courses were observed in two asymptomatic patients receiving warfarin who referred to our hospital because of suspected central hyperthyroidism. We eventually diagnosed these patients with falsely elevated thyroid hormone levels caused by macroscopically invisible fibrin. Although false results caused by fibrin interference in vitro have been identified in various immunoassays, especially in blood samples from patients receiving anticoagulant therapy, no studies on thyroid function testing have been reported. The experience in evaluating these cases prompted us to investigate the independent influence of oral anticoagulants via putative fibrin interference on thyroid function testing. METHODS: We retrospectively reviewed known contributing factors that affect thyroid function testing including age, gender, medication history, body mass index, estimated glomerular filtration rate, smoking status, alcohol consumption, and the seasons of hospital visits from participants who presented the Department of Health Checkup between April 2010 and December 2020. RESULTS: A propensity-matched analysis revealed that the median serum free thyroxine levels under oral anticoagulant were significantly higher (17.9 pmol/L, n = 60) than those without anticoagulants (16.0 pmol/L, n = 60; p < 0.001). It was noted that this difference was the largest among contributing factors we analyzed. No significant differences were noted in serum thyroid-stimulating hormone levels. CONCLUSIONS: We report two patients receiving warfarin with falsely elevated thyroid hormone levels caused by fibrin interference resembling central hyperthyroidism for the first time. Our retrospective study suggests that the medication status of oral anticoagulants should be considered when evaluating thyroid function tests.


Subject(s)
Hyperthyroidism , Thyroxine , Humans , Retrospective Studies , Warfarin/therapeutic use , Thyrotropin , Thyroid Hormones , Hyperthyroidism/diagnosis , Hyperthyroidism/drug therapy , Thyroid Function Tests , Anticoagulants/therapeutic use
2.
Eur Thyroid J ; 10(5): 372-381, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34540707

ABSTRACT

BACKGROUND: Several guidelines have recommended that the use of the lowest effective dose of antithyroid drugs (ATDs) that maintains maternal serum free thyroxine (FT4) levels at or moderately above the upper limit of the reference range is appropriate for fetal euthyroid status. However, little is known about whether ATD dosage affects the difference in serum FT4 levels between the mother and neonate. We conducted a retrospective study at a tertiary hospital in Japan to investigate the dose-dependent influence of ATDs on both maternal and fetal thyroid hormone status. MATERIALS AND METHODS: We retrospectively examined 62 pregnant women who delivered between 2007 and 2016 and were treated for Graves' hyperthyroidism with ATD at any stage during pregnancy. We selected individuals whose data on maternal FT4 level within 4 weeks of their deliveries and cord FT4 level of their infants at the time of delivery were available. Those with multiple pregnancies, iodine or glucocorticoid treatment, and fetal goiter detected by ultrasonography were excluded. RESULTS: After the exclusion criteria were applied, we recruited 40 individuals. The cord FT4 levels were significantly lower than the maternal FT4 levels in patients treated with high-dosage ATDs (methimazole >5 mg daily or propylthiouracil >100 mg daily). However, there were no significant differences between maternal and cord FT4 levels in patients treated with low-dosage ATDs (methimazole ≤5 mg daily or propylthiouracil ≤100 mg daily). We selected 35 individuals whose data on maternal thyrotropin receptor-binding inhibitory immunoglobulin (TBII) level were available. Multiple linear regression analysis adjusted for ATD dosage, maternal TBII level, and gestational period found that ATD dosage was a significant predictor of the difference in serum FT4 levels between the mother and neonate. In terms of maternal complications, multiple logistic regression analysis identified maternal free triiodothyronine (FT3) level as a significant predictor of the incidence of preterm delivery. CONCLUSIONS: We found a dose-dependent influence of ATDs on the difference in serum FT4 levels between mothers with Graves' hyperthyroidism and their neonates. Further studies to evaluate the optimal target FT4 and FT3 levels for the mother and neonate during pregnancy may improve the outcome of pregnant women with Graves' hyperthyroidism.

3.
Endocr J ; 59(7): 547-54, 2012.
Article in English | MEDLINE | ID: mdl-22484995

ABSTRACT

Neuropeptide W (NPW) was isolated as an endogenous ligand for NPBWR1, an orphan G protein-coupled receptor localized in the rat brain, including the paraventricular nucleus. It has been reported that central administration of NPW stimulates corticosterone secretion in rats. We hypothesized that NPW activates the hypothalamic-pituitary-adrenal (HPA) axis via corticotrophin-releasing factor (CRF) and/or arginine vasopressin (AVP). NPW at 1 pM to 10 nM did not affect basal or ACTH-induced corticosterone release from dispersed rat adrenocortical cells, or basal and CRF-induced ACTH release from dispersed rat anterior pituitary cells. In conscious and unrestrained male rats, intravenous administration of 2.5 and 25 nmol NPW did not affect plasma ACTH levels. However, intracerebroventricular (icv) administration of 2.5 and 5.0 nmol NPW increased plasma ACTH levels in a dose-dependent manner at 15 min after stimulation (5.0 vs. 2.5 nmol NPW vs. vehicle: 1802 ± 349 vs. 1170 ± 204 vs. 151 ± 28 pg/mL, respectively, mean ± SEM). Pretreatment with astressin, a CRF receptor antagonist, inhibited the increase in plasma ACTH levels induced by icv administration of 2.5 nmol NPW at 15 min (453 ± 176 vs. 1532 ± 343 pg/mL, p<0.05) and at 30 min (564 ± 147 vs. 1214 ± 139 pg/mL, p<0.05) versus pretreatment with vehicle alone. However, pretreatment with [1-(ß-mercapto-ß, ß-cyclopentamethylenepropionic acid), 2-(Ο-methyl)tyrosine]-arg-vasopressin, a V1a/V1b receptor antagonist, did not affect icv NPW-induced ACTH release at any time (p>0.05). In conclusion, we suggest that central NPW activates the HPA axis by activating hypothalamic CRF but not AVP.


Subject(s)
Adrenocorticotropic Hormone/metabolism , Arginine Vasopressin/physiology , Corticotropin-Releasing Hormone/physiology , Neuropeptides/pharmacology , Adrenocorticotropic Hormone/blood , Animals , Antidiuretic Hormone Receptor Antagonists , Cells, Cultured , Corticosterone/metabolism , Drug Evaluation, Preclinical , Hormone Antagonists/administration & dosage , Hormone Antagonists/pharmacology , Injections, Intravenous , Male , Neuropeptides/administration & dosage , Pituitary Gland, Anterior/cytology , Pituitary Gland, Anterior/drug effects , Pituitary Gland, Anterior/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Signal Transduction/drug effects , Signal Transduction/physiology , Up-Regulation/drug effects
4.
J Clin Endocrinol Metab ; 95(8): 4003-11, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20501680

ABSTRACT

CONTEXT: Methods for preoperative diagnosis of prohormone convertase 2 (PC2)-positive ACTH-producing pituitary adenomas (APPAs) have not been established. Also, their characteristics are not evident. OBJECTIVE: This study was designed to understand the meaning of plasma alphaMSH levels and the role of cell proliferation-signaling molecules in PC2-positive APPAs. PATIENTS AND MAIN OUTCOME MEASURES: Nineteen human APPAs (four males and 15 females) were examined for the expression of PC2, phosphorylated ERK1/2, phosphorylated Akt1/2/3 (p-Akt) and receptor tyrosine kinases. alphaMSH was measured in extracted plasma from 17 APPA patients and 30 healthy volunteers. RESULTS: Nine adenomas (47.4%) were immunopositive for PC2 and were large and invasive in nature. In all normal controls and eight PC2-negative cases, plasma alphaMSH was undetectable, whereas in four PC2-positive cases, it was detected at abnormally higher levels. Eight adenomas (42.1%) were immunopositive for both PC2 and p-Akt, and seven others (36.8%) were immunonegative for both, suggesting significant coexpression of PC2 and p-Akt in tumors. Quantitative RT-PCR revealed that PC2 expression is associated with phosphorylation of Akt but not with its gene expression. Most APPAs expressed receptor tyrosine kinases, but membrane-bound receptors could not be identified. CONCLUSIONS: Our study suggests that PC2 expression and Akt phosphorylation are related at the molecular level, resulting in a change in cell cycle and an increase in pituitary adenoma size. An elevation of plasma alphaMSH could conjecture the activation of the phosphatidylinositol 3/Akt cascade in PC2-positive APPAs and may become a valuable clinical marker of tumor growth in Cushing's disease.


Subject(s)
ACTH-Secreting Pituitary Adenoma/metabolism , Adenoma/metabolism , Proprotein Convertase 2/metabolism , alpha-MSH/blood , ACTH-Secreting Pituitary Adenoma/genetics , Adenoma/genetics , Adolescent , Adult , Aged , Female , Humans , Immunohistochemistry , Male , Middle Aged , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Proprotein Convertase 2/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Radioimmunoassay , Reverse Transcriptase Polymerase Chain Reaction
5.
Endocr J ; 57(2): 109-17, 2010.
Article in English | MEDLINE | ID: mdl-19851032

ABSTRACT

Cytoplasmic calcium ([Ca(2+)](i)) provided through voltage-dependent Ca(2+) channels (VDCC) plays an important role in adrenocorticotropin (ACTH)-induced steroidogenesis in adrenocortical cells. To identify alternative mechanisms for [Ca(2+)](i) supply, we investigated the 2-aminoethoxydiphenyl borate (2APB)-sensitive pathway as one of the possible signaling pathways involved in [Ca(2+)](i) supply for ACTH-induced steroidogenesis. In monolayers of cultured rat adrenal fasciculate and reticularis cells, ACTH at 10(-11) M stimulated corticosterone synthesis without increasing intracellular cAMP, and corticosterone synthesis was decreased by 10 microM 2APB by 51.8% (6.71 +/- 0.97 vs. 3.23 +/- 0.05 ng/mL/4 hours; p<0.05). Furthermore, 2APB significantly decreased the 10(-11) M ACTH-stimulated [Ca(2+)](i). ACTH increased the intracellular inositol-1,4,5-trisphosphate (IP3) content with a peak at 10(-13) M ACTH, which illustrates the possibility that ACTH activates IP3/diacylglycerol- dependent protein kinase C signal transduction. However, the difference in ACTH concentrations between that responsible for the IP3 increase and steroidogenesis without elevated cAMP, suggest a hypothesis that IP3 is not required for steroidogenesis, but does involve an unknown messenger, which stimulates the release of Ca(2+) from the ER or the subsequent store-operated Ca(2+) entry (SOCE). The pregnenolone concentration in the culture medium was increased by ACTH, which was significantly suppressed by 2APB, showing that the 2APB-sensitive Ca(2+) supply affects cholesterol transport into the mitochondrial membrane via steroidogenic acute regulatory protein. Therefore, the SOCE may contribute to ACTH-induced steroidogenesis in the mitochondrial region. In conclusion, the [Ca(2+)](i) used for steroidogenesis may be derived from a 2APB-sensitive pathway and via VDCCs, particularly at physiological concentrations of ACTH. We suggest that ACTH receptors activate steroidogenesis via inositol triphosphate, or an unknown downstream messenger, which could be inhibited by 2APB.


Subject(s)
Adrenocorticotropic Hormone/pharmacology , Boron Compounds/pharmacology , Calcium/pharmacology , Corticosterone/biosynthesis , Animals , Calcium/metabolism , Calcium Channels/drug effects , Calcium Channels/metabolism , Calcium Signaling/physiology , Cells, Cultured , Cyclic AMP/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Male , Rats , Rats, Sprague-Dawley , Thapsigargin/pharmacology
6.
Regul Pept ; 156(1-3): 57-64, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19445971

ABSTRACT

In this study, we investigated the role of store-operated Ca2+ channels (SOCC) on ACTH release using microperifusion system. The SOCC blockers, SKF96365 and MRS1845, did not affect the ACTH response to single AVP stimulation. After the depletion of intracellular Ca2+ stores by treating with ionomycin, SOCC blockers reduced the initial spike phase of ACTH response to AVP, which is mediated by inositol 1,4,5-trisphosphate-induced intracellular Ca2+ release from the endoplasmic reticulum (ER). The sustained plateau phase of ACTH response, which is mediated by protein kinase C leading Ca2+ influx via L-type voltage-dependent Ca2+ channels, was not affected. Addition of L-type voltage-dependent Ca2+ channel blocker nimodipine with the SOCC blockers reduced both the initial spike and sustained phases of ACTH response to AVP. Even after ER Ca2+ depletion, the SOCC blockers did not affect the ACTH response to CRH, which is mediated by cAMP-dependent protein kinase A. Transient receptor potential (TRP) C channel is the strongest candidate for SOCC, and RT-PCR revealed that all types of TRPC homologue mRNA were expressed in rat anterior pituitary cells. In conclusion, the SOCC mediates the initial spike phase of ACTH response to AVP, possibly via ER Ca2+ store refilling to induce maximum response.


Subject(s)
Adrenocorticotropic Hormone/metabolism , Calcium Channels/physiology , Pituitary Gland/cytology , Pituitary Gland/metabolism , Animals , Arginine Vasopressin/pharmacology , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Cells, Cultured , Corticotropin-Releasing Hormone/pharmacology , Hemostatics/pharmacology , Male , Pituitary Gland/drug effects , Radioimmunoassay , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
7.
Regul Pept ; 152(1-3): 73-8, 2009 Jan 08.
Article in English | MEDLINE | ID: mdl-18835572

ABSTRACT

The present study investigated the role of K(+) channels in the inhibitory effect of glucocorticoid on adrenocorticotropin (ACTH) release induced by corticotropin-releasing hormone (CRH) using cultured rat anterior pituitary cells. Apamin and charybdotoxin (CTX) did not have a significant effect on ACTH release induced by CRH (1 nM). Tetraethylammonium (TEA), a broad spectrum K(+) channel blocker, increased the ACTH response to CRH only at the highest concentration (10 mM). The exposure to 100 nM corticosterone for 60 min inhibited the CRH-induced ACTH release. Neither TEA, apamin, nor CTX affected the inhibitory effect of corticosterone. In contrast, astemizole (Ast) and E-4031, ether-a-go-go-related gene (erg) K(+) channel blockers, abolished the inhibitory effect of corticosterone on CRH-induced ACTH release (1.25+/-0.10 vs. 1.45+/-0.11 ng/well at 10 microM Ast, p>0.05, 1.71+/-0.16 vs. 1.91+/-0.32 ng/well at 10 microM E-4031, p>0.05, vehicle vs. corticosterone). RT-PCR demonstrated all three subtypes of rat-erg mRNAs in the pituitary and corticosterone increased only erg1 mRNA up to 2.47+/-0.54 fold. In conclusion, erg K(+) channels were up-regulated by glucocorticoid, and have indispensable roles in delayed glucocorticoid inhibition of CRH-induced ACTH release by rat pituitary cells.


Subject(s)
Adrenocorticotropic Hormone/metabolism , Corticotrophs/metabolism , Ether-A-Go-Go Potassium Channels/metabolism , Glucocorticoids/pharmacology , Animals , Apamin/pharmacology , Cells, Cultured , Corticosterone/metabolism , Corticotropin-Releasing Hormone/metabolism , Ether-A-Go-Go Potassium Channels/genetics , Humans , Male , Piperidines/pharmacology , Pyridines/pharmacology , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Up-Regulation
8.
Pituitary ; 10(1): 35-45, 2007.
Article in English | MEDLINE | ID: mdl-17410413

ABSTRACT

Proopiomelanocortin processing in corticotroph cells is known to be operated by prohormone convertase (PC) 1/3 which is activating several pro-proteins and prohormones by intracellular limited proteolysis processing. In this study, we hypothesized that PC1/3 expression differs between Cushing's disease (CD) and silent corticotroph adenoma (SCA), and investigated whether PC1/3 expression is involved in the adrenocorticotropin (ACTH) silence of SCA. We performed immunohistochemical analysis of pituitary adenoma specimens for six adenohypophysial hormones, PC1/3 and chromogranin A (CgA). Subjects for this study consisted of 12 anterior pituitary adenomas of CD (1 male, 11 female; 14-70 years old) and 31 non-functioning adenomas (23 male, 8 female; 32-71 years old).ACTH immunoreactivity was observed in all of CD and three of 31 non-functioning adenomas. The three cases diagnosed as SCA were also positive for growth hormone and follicle-stimulating hormone. Cushing's adenomas and SCAs were all positive for PC1/3. PC1/3-positive cells did not always colocalize with ACTH but some of them colocalized with CgA in SCAs. Even if PC1/3 is not present in corticotroph cells, PC1/3 immunoreactivity in SCA may originate from CgA-positive cells. We conclude that immunohistochemistry for PC1/3 is not helpful for differential diagnosis between CD and SCA in clinical practice, though the regulation of PC1/3 expression is likely to be an important etiological factor in ACTH silence of SCA. The diversity of immunohistochemical properties of SCA leads us to speculate that it is not a single entity and may be a general diagnostic term for adenomas of varying etiology.


Subject(s)
Adenoma/metabolism , Pituitary ACTH Hypersecretion/metabolism , Pituitary Neoplasms/metabolism , Adolescent , Adrenocorticotropic Hormone/metabolism , Adult , Aged , Chromogranin A/blood , Corticotropin-Releasing Hormone , Female , Follicle Stimulating Hormone/metabolism , Gonadotropin-Releasing Hormone , Growth Hormone-Releasing Hormone , Human Growth Hormone/metabolism , Humans , Immunohistochemistry , Male , Middle Aged , Proprotein Convertases/blood , Thyrotropin
SELECTION OF CITATIONS
SEARCH DETAIL
...