Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Ann Biomed Eng ; 50(5): 529-539, 2022 May.
Article in English | MEDLINE | ID: mdl-35237903

ABSTRACT

As the accuracy of body temperature measurement is especially critical in premature infants on admission to the neonatal intensive care unit (NICU), noninvasive measurement using infrared thermography (IRT) has not been widely adopted in the NICU due to a lack of evidence regarding its accuracy. We have established a new calibration method for IRT in an incubator, and evaluated its accuracy and reliability at different incubator settings using a variable-temperature blackbody furnace. This method improved the accuracy and reliability of IRT with an increase in percentage of data with mean absolute error (MAE) < 0.3 °C to 93.1% compared to 4.2% using the standard method. Two of three IRTs had MAE < 0.1 °C under all conditions examined. This method provided high accuracy not only for measurements at specific times but also for continuous monitoring. It will also contribute to avoiding the risk of neonates' skin trouble caused by attaching a thermistor. This study will facilitate the development of novel means of administering neonatal body temperature.


Subject(s)
Infrared Rays , Thermography , Body Temperature , Humans , Incubators , Infant, Newborn , Reproducibility of Results , Skin Temperature , Thermography/methods
2.
BMC Med Imaging ; 22(1): 1, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34979965

ABSTRACT

BACKGROUND: Regulation of temperature is clinically important in the care of neonates because it has a significant impact on prognosis. Although probes that make contact with the skin are widely used to monitor temperature and provide spot central and peripheral temperature information, they do not provide details of the temperature distribution around the body. Although it is possible to obtain detailed temperature distributions using multiple probes, this is not clinically practical. Thermographic techniques have been reported for measurement of temperature distribution in infants. However, as these methods require manual selection of the regions of interest (ROIs), they are not suitable for introduction into clinical settings in hospitals. Here, we describe a method for segmentation of thermal images that enables continuous quantitative contactless monitoring of the temperature distribution over the whole body of neonates. METHODS: The semantic segmentation method, U-Net, was applied to thermal images of infants. The optimal combination of Weight Normalization, Group Normalization, and Flexible Rectified Linear Unit (FReLU) was evaluated. U-Net Generative Adversarial Network (U-Net GAN) was applied to thermal images, and a Self-Attention (SA) module was finally applied to U-Net GAN (U-Net GAN + SA) to improve precision. The semantic segmentation performance of these methods was evaluated. RESULTS: The optimal semantic segmentation performance was obtained with application of FReLU and Group Normalization to U-Net, showing accuracy of 92.9% and Mean Intersection over Union (mIoU) of 64.5%. U-Net GAN improved the performance, yielding accuracy of 93.3% and mIoU of 66.9%, and U-Net GAN + SA showed further improvement with accuracy of 93.5% and mIoU of 70.4%. CONCLUSIONS: FReLU and Group Normalization are appropriate semantic segmentation methods for application to neonatal thermal images. U-Net GAN and U-Net GAN + SA significantly improved the mIoU of segmentation.


Subject(s)
Body Temperature Regulation , Image Processing, Computer-Assisted/methods , Infant, Premature/physiology , Monitoring, Physiologic/methods , Semantics , Thermography/methods , Female , Humans , Infant, Newborn , Male
3.
Article in English | MEDLINE | ID: mdl-34891239

ABSTRACT

Antenatal fetal health monitoring primarily depends on the signal analysis of abdominal or transabdominal electrocardiogram (ECG) recordings. The noninvasive approach for obtaining fetal heart rate (HR) reduces risks of potential infections and is convenient for the expectant mother. However, in addition to strong maternal ECG presence, undesirable signals due to body motion activity, muscle contractions, and certain bio-electric potentials degrade the diagnostic quality of obtained fetal ECG from abdominal ECG recordings. In this paper, we address this problem by proposing an improved framework for estimating fetal HR from non-invasively acquired abdominal ECG recordings. Since the most significant contamination is due to maternal ECG, in the proposed framework, we rely on neural network autoencoder for reconstructing maternal ECG. The autoencoder endeavors to establish the nonlinear mapping between abdominal ECG and maternal ECG thus preserving inherent fetal ECG artifacts. The framework is supplemented with an existing blind-source separation (BSS) algorithm for post-treatment of residual signals obtained after subtracting reconstructed maternal ECG from abdominal ECG. Furthermore, experimental assessments on clinically-acquired subjects' recordings advocate the effectiveness of the proposed framework in comparison with conventional techniques for maternal ECG removal.


Subject(s)
Heart Rate, Fetal , Signal Processing, Computer-Assisted , Algorithms , Artifacts , Electrocardiography , Female , Humans , Pregnancy
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 434-438, 2021 11.
Article in English | MEDLINE | ID: mdl-34891326

ABSTRACT

Fetal heart rate monitoring using the abdominal electrocardiograph (ECG) is an important topic for the diagnosis of heart defects. Many studies on fetal heart rate detection have been presented, however, their accuracy is still unsatisfactory. That is because the fetal ECG waveform is contaminated by maternal ECG interference, muscle contractions, and motion artifacts. One of the conventional methods is to detect the R-peaks from the integrated power of the frequency corresponding to the fetal heartbeats. However, the detection accuracy of the R-peaks is not enough. In this paper, we propose a method to generate the candidates of R-peaks using the first derivative of the signal and to pick up the estimated heartbeats by a multiple weighting function. The proposed multiple weighting function is designed by the Gaussian distribution, of which parameters are set from a grid search with the goal of minimizing the standard deviation of RR intervals (neighboring R-peaks intervals). The validation for the proposed framework has been evaluated on real-world data, which got the better accuracy than the conventional method that detects R-peaks from the integrated power and uses the weighting function produced by a fixed parameter of Gaussian distribution [12]. The averaged absolute error (AAE) which compares the estimated fetal heart rate and the reference fetal heart rate has been decreased by 17.528 bpm.


Subject(s)
Heart Rate, Fetal , Signal Processing, Computer-Assisted , Algorithms , Artifacts , Electrocardiography , Female , Humans , Pregnancy
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 616-620, 2020 07.
Article in English | MEDLINE | ID: mdl-33018063

ABSTRACT

Despite the enormous potential applications, non-invasive recordings have not yet made enough satisfaction for fetal disease detection. This is mainly due to the fetal ECG signal is contaminated by the maternal electrocardiograph (ECG) interference, muscle contractions, and motion artifacts. In this paper, we propose a joint multiple subspace-based blind source separation (BSS) approach to extract the fetal heart rate (HR), so that it could greatly reduce the effect of maternal ECG and motion artifacts. The approach relies on the estimation of the coefficient matrix formulated as the tensor decomposition in terms of multiple datasets. Since the objective function takes the coupling information from the stacking of the covariance matrix for multiple datasets into account, estimating the coefficient matrices is fulfilled not only on dependence across multiple datasets, but also can combine the extracted components across four different datasets. Numerical results demonstrate that the proposed method can achieve a high extracted HR accuracy for each dataset, when compared to some conventional methods.


Subject(s)
Heart Rate, Fetal , Signal Processing, Computer-Assisted , Artifacts , Electrocardiography , Female , Fetus , Humans , Pregnancy
6.
J Appl Clin Med Phys ; 19(2): 144-153, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29369463

ABSTRACT

PURPOSE: We developed a system for calculating patient positional displacement between digital radiography images (DRs) and digitally reconstructed radiography images (DRRs) to reduce patient radiation exposure, minimize individual differences between radiological technologists in patient positioning, and decrease positioning time. The accuracy of this system at five sites was evaluated with clinical data from cancer patients. The dependence of calculation accuracy on the size of the region of interest (ROI) and initial position was evaluated for clinical use. METHODS: For a preliminary verification, treatment planning and positioning data from eight setup patterns using a head and neck phantom were evaluated. Following this, data from 50 patients with prostate, lung, head and neck, liver, or pancreatic cancer (n = 10 each) were evaluated. Root mean square errors (RMSEs) between the results calculated by our system and the reference positions were assessed. The reference positions were manually determined by two radiological technologists to best-matching positions with orthogonal DRs and DRRs in six axial directions. The ROI size dependence was evaluated by comparing RMSEs for three different ROI sizes. Additionally, dependence on initial position parameters was evaluated by comparing RMSEs for four position patterns. RESULTS: For the phantom study, the average (± standard deviation) translation error was 0.17 ± 0.05, rotation error was 0.17 ± 0.07, and ΔD was 0.14 ± 0.05. Using the optimal ROI size for each patient site, all cases of prostate, lung, and head and neck cancer with initial position parameters of 10 mm or under were acceptable in our tolerance. However, only four liver cancer cases and three pancreatic cancer cases were acceptable, because of low-reproducibility regions in the ROIs. CONCLUSION: Our system has clinical practicality for prostate, lung, and head and neck cancer cases. Additionally, our findings suggest ROI size dependence in some cases.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Heavy Ion Radiotherapy , Liver Neoplasms/radiotherapy , Lung Neoplasms/radiotherapy , Pancreatic Neoplasms/radiotherapy , Patient Positioning , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Setup Errors/prevention & control , Humans , Phantoms, Imaging , Prognosis , Radiotherapy Dosage , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...