Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Comput ; 33(11): 2908-2950, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34474476

ABSTRACT

Replay is the reactivation of one or more neural patterns that are similar to the activation patterns experienced during past waking experiences. Replay was first observed in biological neural networks during sleep, and it is now thought to play a critical role in memory formation, retrieval, and consolidation. Replay-like mechanisms have been incorporated in deep artificial neural networks that learn over time to avoid catastrophic forgetting of previous knowledge. Replay algorithms have been successfully used in a wide range of deep learning methods within supervised, unsupervised, and reinforcement learning paradigms. In this letter, we provide the first comprehensive comparison between replay in the mammalian brain and replay in artificial neural networks. We identify multiple aspects of biological replay that are missing in deep learning systems and hypothesize how they could be used to improve artificial neural networks.


Subject(s)
Deep Learning , Algorithms , Animals , Hippocampus , Neural Networks, Computer , Reinforcement, Psychology , Sleep
2.
PLoS One ; 15(9): e0238302, 2020.
Article in English | MEDLINE | ID: mdl-32886692

ABSTRACT

Supervised classification methods often assume the train and test data distributions are the same and that all classes in the test set are present in the training set. However, deployed classifiers often require the ability to recognize inputs from outside the training set as unknowns. This problem has been studied under multiple paradigms including out-of-distribution detection and open set recognition. For convolutional neural networks, there have been two major approaches: 1) inference methods to separate knowns from unknowns and 2) feature space regularization strategies to improve model robustness to novel inputs. Up to this point, there has been little attention to exploring the relationship between the two approaches and directly comparing performance on large-scale datasets that have more than a few dozen categories. Using the ImageNet ILSVRC-2012 large-scale classification dataset, we identify novel combinations of regularization and specialized inference methods that perform best across multiple open set classification problems of increasing difficulty level. We find that input perturbation and temperature scaling yield significantly better performance on large-scale datasets than other inference methods tested, regardless of the feature space regularization strategy. Conversely, we find that improving performance with advanced regularization schemes during training yields better performance when baseline inference techniques are used; however, when advanced inference methods are used to detect open set classes, the utility of these combersome training paradigms is less evident.


Subject(s)
Algorithms , Classification/methods , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Pattern Recognition, Automated/methods , Datasets as Topic , Humans , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...