Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Med ; 26(6): 101106, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38420906

ABSTRACT

PURPOSE: Inherited retinal diseases (IRDs) are a group of monogenic conditions that can lead to progressive blindness. Their missing heritability is still considerable, due in part to the presence of disease genes that await molecular identification. The purpose of this work was to identify novel genetic associations with IRDs. METHODS: Patients underwent a comprehensive ophthalmological evaluation using standard-of-care tests, such as detailed retinal imaging (macular optical coherence tomography and short-wavelength fundus autofluorescence) and electrophysiological testing. Exome and genome sequencing, as well as computer-assisted data analysis were used for genotyping and detection of DNA variants. A minigene-driven splicing assay was performed to validate the deleterious effects of 1 of such variants. RESULTS: We identified 8 unrelated families from Hungary, the United States, Israel, and The Netherlands with members presenting with a form of autosomal recessive and nonsyndromic retinal degeneration, predominantly described as rod-cone dystrophy but also including cases of cone/cone-rod dystrophy. Age of disease onset was very variable, with some patients experiencing first symptoms during their fourth decade of life or later. Myopia greater than 5 diopters was present in 5 of 7 cases with available refractive data, and retinal detachment was reported in 2 cases. All ascertained patients carried biallelic loss-of-function variants in UBAP1L (HGNC: 40028), a gene with unknown function and with homologies to UBAP1, encoding a protein involved in ubiquitin metabolism. One of these pathogenic variants, the intronic NM_001163692.2:c.910-7G>A substitution, was identified in 5 unrelated families. Minigene-driven splicing assays in HEK293T cells confirmed that this DNA change is responsible for the creation of a new acceptor splice site, resulting in aberrant splicing. CONCLUSION: We identified UBAP1L as a novel IRD gene. Although its function is currently unknown, UBAP1L is almost exclusively expressed in photoreceptors and the retinal pigment epithelium, hence possibly explaining the link between pathogenic variants in this gene and an ocular phenotype.


Subject(s)
Pedigree , Retinal Degeneration , Humans , Male , Female , Adult , Retinal Degeneration/genetics , Middle Aged , Loss of Function Mutation , Genes, Recessive , Child , Adolescent , Cone-Rod Dystrophies/genetics , Hungary , Young Adult , Genetic Predisposition to Disease
2.
J Med Genet ; 61(3): 224-231, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-37798099

ABSTRACT

BACKGROUND: Inherited retinal diseases (IRDs) include a range of vision loss conditions caused by variants in different genes. The clinical and genetic heterogeneity make identification of the genetic cause challenging. Here, a cohort of 491 unsolved cases from our cohort of Israeli and Palestinian families with IRDs underwent whole exome sequencing (WES), including detection of CNVs as well as single nucleotide variants (SNVs). METHODS: All participants underwent clinical examinations. Following WES on DNA samples by 3 billion, initial SNV analysis was performed by 3 billion and SNV and CNV analysis by Franklin Genoox. The CNVs indicated by the programme were confirmed by PCR followed by gel electrophoresis. RESULTS: WES of 491 IRD cases revealed the genetic cause of disease in 51% of cases, of which 11% were due wholly or in part to CNVs. In two cases, we clarified previously incorrect or unclear clinical diagnoses. This analysis also identified ESRRB and DNM1 as potential novel genes. CONCLUSION: This analysis is the most extensive one to include CNVs to examine IRD causing genes in the Israeli and Palestinian populations. It has allowed us to identify the causative variant of many patients with IRDs including ones with unclear diagnoses and potential novel genes.


Subject(s)
Retinal Diseases , Humans , Exome Sequencing , Retinal Diseases/genetics , Sequence Analysis, DNA/methods , DNA , DNA Copy Number Variations/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...