Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Pathol ; 194(5): 628-636, 2024 May.
Article in English | MEDLINE | ID: mdl-38309429

ABSTRACT

Neutrophils are an important cell type often considered the body's first responders to inflammatory insult or damage. They are recruited to the tissue of the lungs in patients with inflammatory airspace diseases and have unique and complex functions that range from helpful to harmful. The uniqueness of these functions is due to the heterogeneity of the inflammatory cascade and retention in the vasculature. Neutrophils are known to marginate, or remain stagnant, in the lungs even in nondisease conditions. This review discusses the ways in which the recruitment, presence, and function of neutrophils in the airspace of the lungs are unique from those of other tissues, and the complex effects of neutrophils on pathogenesis. Inflammatory mediators produced by neutrophils, such as neutrophil elastase, proresolving mediators, and neutrophil extracellular traps, dramatically affect the outcomes of patients with disease of the lungs.


Subject(s)
Extracellular Traps , Neutrophils , Humans , Neutrophil Infiltration , Neutrophils/metabolism , Lung , Extracellular Traps/metabolism
2.
Immunity ; 56(10): 2311-2324.e6, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37643615

ABSTRACT

Engagement of platelet endothelial cell adhesion molecule 1 (PECAM, PECAM-1, CD31) on the leukocyte pseudopod with PECAM at the endothelial cell border initiates transendothelial migration (TEM, diapedesis). We show, using fluorescence lifetime imaging microscopy (FLIM), that physical traction on endothelial PECAM during TEM initiated the endothelial signaling pathway. In this role, endothelial PECAM acted as part of a mechanotransduction complex with VE-cadherin and vascular endothelial growth factor receptor 2 (VEGFR2), and this predicted that VEGFR2 was required for efficient TEM. We show that TEM required both VEGFR2 and the ability of its Y1175 to be phosphorylated, but not VEGF or VEGFR2 endogenous kinase activity. Using inducible endothelial-specific VEGFR2-deficient mice, we show in three mouse models of inflammation that the absence of endothelial VEGFR2 significantly (by ≥75%) reduced neutrophil extravasation by selectively blocking diapedesis. These findings provide a more complete understanding of the process of transmigration and identify several potential anti-inflammatory targets.


Subject(s)
Transendothelial and Transepithelial Migration , Vascular Endothelial Growth Factor Receptor-2 , Animals , Mice , Cell Adhesion , Cell Movement , Endothelium, Vascular , Mechanotransduction, Cellular , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
3.
Curr Protoc ; 3(4): e739, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37078364

ABSTRACT

Inflammation is the body's response to injury and harmful stimuli and contributes to a range of infectious and noninfectious diseases. Inflammation occurs through a series of well-defined leukocyte-endothelial cell interactions, including rolling, activation, adhesion, transmigration, and subsequent migration through the extracellular matrix. Being able to visualize the stages of inflammation is important for a better understanding of its role in diseases processes. Detailed in this article are protocols for imaging immune cell infiltration and transendothelial migration in vascular tissue beds, including those in the mouse ear, cremaster muscle, brain, lung, and retina. Also described are protocols for inducing inflammation and quantifying leukocytes with FIJI imaging software. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Induction of croton oil dermatitis Alternate Protocol 1: Induction of croton oil dermatitis using genetically fluorescent mice Basic Protocol 2: Intravital microscopy of the mouse cremaster muscle Support Protocol: Making a silicone stage Basic Protocol 3: Wide-field microscopy of the mouse brain Basic Protocol 4: Imaging the lungs (ex vivo) Alternate Protocol 2: Inflating the lungs without tracheostomy Basic Protocol 5: Inducing, imaging, and quantifying infiltration of leukocytes in mouse retina.


Subject(s)
Dermatitis , Transendothelial and Transepithelial Migration , Mice , Animals , Croton Oil , Leukocytes/physiology , Inflammation/diagnostic imaging
4.
Curr Biol ; 32(19): 4201-4214.e12, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36049480

ABSTRACT

Red coloration is a salient feature of the natural world. Many vertebrates produce red color by converting dietary yellow carotenoids into red ketocarotenoids via an unknown mechanism. Here, we show that two enzymes, cytochrome P450 2J19 (CYP2J19) and 3-hydroxybutyrate dehydrogenase 1-like (BDH1L), are sufficient to catalyze this conversion. In birds, both enzymes are expressed at the sites of ketocarotenoid biosynthesis (feather follicles and red cone photoreceptors), and genetic evidence implicates these enzymes in yellow/red color variation in feathers. In fish, the homologs of CYP2J19 and BDH1L are required for ketocarotenoid production, and we show that these enzymes are sufficient to produce ketocarotenoids in cell culture and when ectopically expressed in fish skin. Finally, we demonstrate that the red-cone-enriched tetratricopeptide repeat protein 39B (TTC39B) enhances ketocarotenoid production when co-expressed with CYP2J19 and BDH1L. The discovery of this mechanism of ketocarotenoid biosynthesis has major implications for understanding the evolution of color diversity in vertebrates.


Subject(s)
Hydroxybutyrate Dehydrogenase , Pigmentation , Animals , Birds/genetics , Carotenoids , Cytochrome P-450 Enzyme System/genetics , Feathers , Pigmentation/genetics
5.
Am J Pathol ; 192(11): 1619-1632, 2022 11.
Article in English | MEDLINE | ID: mdl-35952762

ABSTRACT

The infiltration of polymorphonuclear leukocytes (PMNs) in ischemia-reperfusion injury (I/RI) has been implicated as a critical component of inflammatory damage following ischemic stroke. However, successful blockade of PMN transendothelial migration (TEM) in preclinical studies has not translated to meaningful clinical outcomes. To investigate this further, leukocyte infiltration patterns were quantified, and these patterns were modulated by blocking platelet endothelial cell adhesion molecule-1 (PECAM), a key regulator of TEM. LysM-eGFP mice and microscopy were used to visualize all myeloid leukocyte recruitment following ischemia/reperfusion. Visual examination showed heterogeneous leukocyte distribution across the infarct at both 24 and 72 hours after I/RI. A semiautomated process was designed to precisely map PMN position across brain sections. Treatment with PECAM function-blocking antibodies did not significantly affect total leukocyte recruitment but did alter their distribution, with more observed at the cortex at both early and later time points (24 hours: 89% PECAM blocked vs. 72% control; 72 hours: 69% PECAM blocked vs. 51% control). This correlated with a decrease in infarct volume. These findings suggest that TEM, in the setting of I/RI in the cerebrovasculature, occurs primarily at the cortical surface. The reduction of stroke size with PECAM blockade suggests that infiltrating PMNs may exacerbate I/RI and indicate the potential therapeutic benefit of regulating the timing and pattern of leukocyte infiltration after stroke.


Subject(s)
Ischemic Stroke , Animals , Mice , Cell Adhesion , Endothelium, Vascular/metabolism , Infarction , Neutrophil Infiltration , Neutrophils , Platelet Endothelial Cell Adhesion Molecule-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...