Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(2): 784-800, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38000394

ABSTRACT

Activation-induced cytidine deaminase (AID) interacts with replication protein A (RPA), the major ssDNA-binding protein, to promote deamination of cytosine to uracil in transcribed immunoglobulin (Ig) genes. Uracil-DNA glycosylase (UNG) acts in concert with AID during Ig diversification. In addition, UNG preserves genome integrity by base-excision repair (BER) in the overall genome. How UNG is regulated to support both mutagenic processing and error-free repair remains unknown. UNG is expressed as two isoforms, UNG1 and UNG2, which both contain an RPA-binding helix that facilitates uracil excision from RPA-coated ssDNA. However, the impact of this interaction in antibody diversification and genome maintenance has not been investigated. Here, we generated B-cell clones with targeted mutations in the UNG RPA-binding motif, and analysed class switch recombination (CSR), mutation frequency (5' Ig Sµ), and genomic uracil in clones representing seven Ung genotypes. We show that the UNG:RPA interaction plays a crucial role in both CSR and repair of AID-induced uracil at the Ig loci. By contrast, the interaction had no significant impact on total genomic uracil levels. Thus, RPA coordinates UNG during CSR and pre-replicative repair of mutagenic uracil in ssDNA but is not essential in post-replicative and canonical BER of uracil in dsDNA.


Subject(s)
Replication Protein A , Uracil-DNA Glycosidase , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , DNA Repair/genetics , DNA, Single-Stranded/genetics , Immunoglobulin Class Switching/genetics , Immunoglobulin Isotypes/genetics , Immunoglobulins/genetics , Mutagens , Replication Protein A/genetics , Replication Protein A/metabolism , Uracil/metabolism , Uracil-DNA Glycosidase/genetics , Uracil-DNA Glycosidase/metabolism , Humans , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...