Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Virol ; 96(20): e0115222, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36173189

ABSTRACT

Bats are recognized as important reservoirs of viruses deadly to other mammals, including humans. These infections are typically nonpathogenic in bats, raising questions about host response differences that might exist between bats and other mammals. Tetherin is a restriction factor which inhibits the release of a diverse range of viruses from host cells, including retroviruses, coronaviruses, filoviruses, and paramyxoviruses, some of which are deadly to humans and transmitted by bats. Here, we characterize the tetherin genes from 27 bat species, revealing that they have evolved under strong selective pressure, and that fruit bats and vesper bats express unique structural variants of the tetherin protein. Tetherin was widely and variably expressed across fruit bat tissue types and upregulated in spleen tissue when stimulated with Toll-like receptor agonists. The expression of two computationally predicted splice isoforms of fruit bat tetherin was verified. We identified an additional third unique splice isoform which includes a C-terminal region that is not homologous to known mammalian tetherin variants but was functionally capable of restricting the release of filoviral virus-like particles. We also report that vesper bats possess and express at least five tetherin genes, including structural variants, more than any other mammal reported to date. These findings support the hypothesis of differential antiviral gene evolution in bats relative to other mammals. IMPORTANCE Bats are an important host of various viruses which are deadly to humans and other mammals but do not cause outward signs of illness in bats. Furthering our understanding of the unique features of the immune system of bats will shed light on how they tolerate viral infections, potentially informing novel antiviral strategies in humans and other animals. This study examines the antiviral protein tetherin, which prevents viral particles from escaping their host cell. Analysis of tetherin from 27 bat species reveals that it is under strong evolutionary pressure, and we show that multiple bat species have evolved to possess more tetherin genes than other mammals, some of which encode structurally unique tetherins capable of activity against different viral particles. These data suggest that bat tetherin plays a potentially broad and important role in the management of viral infections in bats.


Subject(s)
Chiroptera , Virus Diseases , Viruses , Humans , Animals , Bone Marrow Stromal Antigen 2/genetics , Antiviral Agents , Toll-Like Receptors
2.
Microbiome ; 10(1): 141, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36045402

ABSTRACT

BACKGROUND: Women with a cervicovaginal microbiota dominated by Lactobacillus spp. are at reduced risk of acquiring sexually transmitted infections including HIV, but the biological mechanisms involved remain poorly defined. Here, we performed metaproteomics on vaginal swab samples from young South African women (n = 113) and transcriptomics analysis of cervicovaginal epithelial cell cultures to examine the ability of lactic acid, a metabolite produced by cervicovaginal lactobacilli, to modulate genital epithelial barrier function. RESULTS: Compared to women with Lactobacillus-depleted microbiota, women dominated by vaginal lactobacilli exhibit higher abundance of bacterial lactate dehydrogenase, a key enzyme responsible for lactic acid production, which is independently associated with an increased abundance of epithelial barrier proteins. Physiological concentrations of lactic acid enhance epithelial cell culture barrier integrity and increase intercellular junctional molecule expression. CONCLUSIONS: These findings reveal a novel ability of vaginal lactic acid to enhance genital epithelial barrier integrity that may help prevent invasion by sexually transmitted pathogens. Video abstract.


Subject(s)
Lactic Acid , Microbiota , Vagina , Epithelium , Female , Humans , Lactic Acid/metabolism , Lactobacillus/metabolism , Microbiota/physiology , Tight Junction Proteins/metabolism , Vagina/metabolism , Vagina/microbiology
3.
Clin Gerontol ; 45(2): 235-251, 2022.
Article in English | MEDLINE | ID: mdl-31903862

ABSTRACT

Objective: This review integrates literature to discuss the potential use of virtual reality (VR) in treatment of anxiety in Parkinson's disease (PD) and inform next steps.Methods: A systematic search was performed to identify studies of VR use in PD, using four databases. Data were reported in accordance to the Preferred Reporting Items for Systematic reviews and Meta-Analyzes extension for Scoping Reviews (PRISMA-ScR).Results: Thirty-two studies met the inclusion criteria with four VR studies from the same study group directly assessing the effects of anxiety on motor symptoms in PD. Primary studies implementing a VR protocol in PD identified focus areas of understanding and alleviating freezing of gait (FOG), balance training, and cognitive and motor rehabilitation, and informed design considerations.Conclusion: VR in PD studies suggested established feasibility. With appropriate design considerations, a VR based protocol could improve anxiety outcomes in PD.Clinical implications: VR in PD provides control of a patient's field of view, which can be exploited to induce specific responses, provide visual feedback, analysis of patient actions, and introduce safe challenges in the context of training. VR assisted Cognitive Behavioral Therapy (CBT) tailored to suit subtypes of anxiety disorders in PD have the potential to improve the efficacy and effectiveness of psychotherapy in PD.


Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Virtual Reality , Aged , Anxiety/therapy , Anxiety Disorders/therapy , Gait Disorders, Neurologic/rehabilitation , Humans , Parkinson Disease/complications , Parkinson Disease/psychology , Parkinson Disease/therapy , Psychotherapy
4.
mBio ; 12(5): e0194121, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34488459

ABSTRACT

Bats are infamous reservoirs of deadly human viruses. While retroviruses, such as the human immunodeficiency virus (HIV), are among the most significant of virus families that have jumped from animals into humans, whether bat retroviruses have the potential to infect and cause disease in humans remains unknown. Recent reports of retroviruses circulating in bat populations builds on two decades of research describing the fossil records of retroviral sequences in bat genomes and of viral metagenomes extracted from bat samples. The impact of the global COVID-19 pandemic demands that we pay closer attention to viruses hosted by bats and their potential as a zoonotic threat. Here we review current knowledge of bat retroviruses and explore the question of whether they represent a threat to humans.


Subject(s)
Chiroptera/virology , Retroviridae/pathogenicity , Animals , Zoonoses/virology
5.
Viruses ; 13(3)2021 03 10.
Article in English | MEDLINE | ID: mdl-33802118

ABSTRACT

Heightened expression of human endogenous retrovirus (HERV) sequences has been associated with a range of malignancies, including prostate cancer, suggesting that they may serve as useful diagnostic or prognostic cancer biomarkers. We analysed the expression of HERV-K (Gag and Env/Np9 regions), HERV-E 4.1 (Pol and Env regions), HERV-H (Pol) and HERV-W (Gag) sequences in prostate cancer cells lines and normal prostate epithelial cells using qRT-PCR. HERV expression was also analysed in matched malignant and benign prostate tissue samples from men with prostate cancer (n = 27, median age 65.2 years (range 47-70)) and compared to prostate cancer-free male controls (n = 11). Prostate cancer epithelial cell lines exhibited a signature of HERV RNA overexpression, with all HERVs analysed, except HERV-E Pol, showing heightened expression in at least two, but more commonly all, cell lines analysed. Analysis of primary prostate material indicated increased expression of HERV-E Pol but decreased expression of HERV-E Env in both malignant and benign regions of the prostate in men with prostate cancer as compared to those without. Expression of HERV-K Gag was significantly higher in malignant regions of the prostate in men with prostate cancer as compared to matched benign regions and prostate cancer-free men (p < 0.001 for both), with 85.2% of prostate cancers donors showing malignancy-associated upregulation of HERV-K Gag RNA. HERV-K Gag protein was detected in 12/18 (66.7%) malignant tissues using immunohistochemistry, but only 1/18 (5.6%) benign tissue sections. Heightened expression of HERV-K Gag RNA and protein appears to be a sensitive and specific biomarker of prostate malignancy in this cohort of men with prostate carcinoma, supporting its potential utility as a non-invasive, adjunct clinical biomarker.


Subject(s)
Endogenous Retroviruses/genetics , Gene Products, env/genetics , Gene Products, gag/genetics , Gene Products, pol/genetics , Prostatic Neoplasms/genetics , Aged , Biomarkers, Tumor/genetics , Cell Line, Tumor , Endogenous Retroviruses/isolation & purification , Gene Expression Regulation, Neoplastic/genetics , Gene Products, env/metabolism , Gene Products, gag/metabolism , Gene Products, pol/metabolism , Humans , Male , Middle Aged , Prostate/metabolism , Prostatic Neoplasms/diagnosis
6.
Viruses ; 12(6)2020 06 06.
Article in English | MEDLINE | ID: mdl-32517260

ABSTRACT

The Australasian Virology Society (AVS) aims to promote, support and advocate for the discipline of virology in the Australasian region. The society was incorporated in 2011 after 10 years operating as the Australian Virology Group (AVG) founded in 2001, coinciding with the inaugural biennial scientific meeting. AVS conferences aim to provide a forum for the dissemination of all aspects of virology, foster collaboration, and encourage participation by students and post-doctoral researchers. The tenth Australasian Virology Society (AVS10) scientific meeting was held on 2-5 December 2019 in Queenstown, New Zealand. This report highlights the latest research presented at the meeting, which included cutting-edge virology presented by our international plenary speakers Ana Fernandez-Sesma and Benjamin tenOever, and keynote Richard Kuhn. AVS10 honoured female pioneers in Australian virology, Lorena Brown and Barbara Coulson. We report outcomes from the AVS10 career development session on "Successfully transitioning from post-doc to lab head", winners of best presentation awards, and the AVS gender equity policy, initiated in 2013. Plans for the 2021 meeting are underway which will celebrate the 20th anniversary of AVS where it all began, in Fraser Island, Queensland, Australia.


Subject(s)
Virology/organization & administration , Australia , Awards and Prizes , Group Processes , Societies, Scientific
7.
Proc Natl Acad Sci U S A ; 117(17): 9529-9536, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32284399

ABSTRACT

Bats are reservoirs of emerging viruses that are highly pathogenic to other mammals, including humans. Despite the diversity and abundance of bat viruses, to date they have not been shown to harbor exogenous retroviruses. Here we report the discovery and characterization of a group of koala retrovirus-related (KoRV-related) gammaretroviruses in Australian and Asian bats. These include the Hervey pteropid gammaretrovirus (HPG), identified in the scat of the Australian black flying fox (Pteropus alecto), which is the first reproduction-competent retrovirus found in bats. HPG is a close relative of KoRV and the gibbon ape leukemia virus (GALV), with virion morphology and Mn2+-dependent virion-associated reverse transcriptase activity typical of a gammaretrovirus. In vitro, HPG is capable of infecting bat and human cells, but not mouse cells, and displays a similar pattern of cell tropism as KoRV-A and GALV. Population studies reveal the presence of HPG and KoRV-related sequences in several locations across northeast Australia, as well as serologic evidence for HPG in multiple pteropid bat species, while phylogenetic analysis places these bat viruses as the basal group within the KoRV-related retroviruses. Taken together, these results reveal bats to be important reservoirs of exogenous KoRV-related gammaretroviruses.


Subject(s)
Chiroptera/virology , Gammaretrovirus/isolation & purification , Animals , Australia , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Phascolarctidae/virology
8.
Viruses ; 11(1)2019 01 03.
Article in English | MEDLINE | ID: mdl-30609802

ABSTRACT

The filoviruses Ebolavirus and Marburgvirus are among the deadliest viral pathogens known to infect humans, causing emerging diseases with fatality rates of up to 90% during some outbreaks. The replication cycles of these viruses are comprised of numerous complex molecular processes and interactions with their human host, with one key feature being the means by which nascent virions exit host cells to spread to new cells and ultimately to a new host. This review focuses on our current knowledge of filovirus egress and the viral and host factors and processes that are involved. Within the virus, these factors consist of the major matrix protein, viral protein 40 (VP40), which is necessary and sufficient for viral particle release, and nucleocapsid and glycoprotein that interact with VP40 to promote egress. In the host cell, some proteins are hijacked by filoviruses in order to enhance virion budding capacity that include members of the family of E3 ubiquitin ligase and the endosomal sorting complexes required for transport (ESCRT) pathway, while others such as tetherin inhibit viral egress. An understanding of these molecular interactions that modulate viral particle egress provides an important opportunity to identify new targets for the development of antivirals to prevent and treat filovirus infections.


Subject(s)
Ebolavirus/physiology , Host Microbial Interactions , Marburgvirus/physiology , Virus Release , Animals , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , HEK293 Cells , Humans , Mice , Nucleocapsid/genetics , Nucleocapsid/metabolism , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism
9.
Article in English | MEDLINE | ID: mdl-31998660

ABSTRACT

Non-optimal vaginal microbiota, as observed in bacterial vaginosis (BV), is typically characterized by a depletion of beneficial lactobacilli and an abundance of numerous anaerobes. These non-optimal conditions are associated with subclinical cervicovaginal inflammation and an increased risk of HIV infection compared to women colonized with optimal vaginal microbiota dominated by lactobacilli. Lactic acid (LA) is a major organic acid metabolite produced by vaginal lactobacilli that elicits anti-inflammatory effects from cervicovaginal epithelial cells and is dramatically depleted during BV. However, it is unclear if LA retains its anti-inflammatory activity in the presence of vaginal microbiota metabolites comprising short chain fatty acids (SCFAs) and succinic acid, which are also produced by an optimal vaginal microbiota. Furthermore, the immunomodulatory effect of SCFAs and succinic acid on cervicovaginal epithelial cells at higher concentrations present during BV is unknown. Here we report that in the presence of physiologically relevant concentrations of SCFAs and succinic acid at pH 3.9 (as found in women with lactobacillus-dominated microbiota) LA induced an anti-inflammatory state in cervicovaginal epithelial cells and inhibited inflammation elicited by the toll-like receptor (TLR) agonists polyinosinic:polycytidylic acid and Pam3CSK4. When cervicovaginal epithelial cells were treated with a vaginal microbiota metabolite mixture representative of BV, containing a lower concentration of LA but higher concentrations of SCFA/succinic acid at pH 7, no anti-inflammatory was observed. Rather, the vaginal microbiota metabolite mixture representative of BV dysregulated the immune response of cervicovaginal epithelial cells during prolonged and sustained treatments. This was evidenced by increased basal and TLR-induced production of pro-inflammatory cytokines including tumor necrosis factor-α, but decreased basal production of chemokines including RANTES and IP-10. Further characterization of individual components of the BV vaginal microbiota mixture suggested that acetic acid is an important vaginal microbiota metabolite capable of eliciting diverse immunomodulatory effects on a range of cervicovaginal epithelial cell targets. These findings indicate that elevated levels of SCFAs are a potential source of cervicovaginal inflammation in women experiencing BV, and support the unique anti-inflammatory properties of LA on cervicovaginal epithelial cells as well as a role for LA or LA-producing lactobacilli to reverse genital inflammation associated with increased HIV risk.


Subject(s)
Epithelial Cells/metabolism , Fatty Acids, Volatile/metabolism , Lactic Acid/metabolism , Microbiota/physiology , Vagina/immunology , Vagina/microbiology , Anti-Inflammatory Agents/metabolism , Chemokines/metabolism , Cytokines/metabolism , Epithelial Cells/drug effects , Female , HIV Infections/immunology , Humans , Inflammation , Lactic Acid/pharmacology , Lactobacillus/metabolism , Succinic Acid , Vaginosis, Bacterial/immunology
10.
mSphere ; 3(4)2018 07 05.
Article in English | MEDLINE | ID: mdl-29976641

ABSTRACT

Women of reproductive age with a Lactobacillus-dominated vaginal microbiota have a reduced risk of acquiring and transmitting HIV and a vaginal pH of ~4 due to the presence of ~1% (wt/vol) lactic acid. While lactic acid has potent HIV virucidal activity in vitro, whether lactic acid present in the vaginal lumen inactivates HIV has not been investigated. Here we evaluated the anti-HIV-1 activity of native, minimally diluted cervicovaginal fluid obtained from women of reproductive age (n = 20) with vaginal microbiota dominated by Lactobacillus spp. Inhibition of HIVBa-L was significantly associated with the protonated form of lactic acid in cervicovaginal fluid. The HIVBa-L inhibitory activity observed in the <3-kDa acidic filtrate was similar to that of the corresponding untreated native cervicovaginal fluid as well as that of clarified neat cervicovaginal fluid subjected to protease digestion. These ex vivo studies indicate that protonated lactic acid is a major anti-HIV-1 metabolite present in acidic cervicovaginal fluid, suggesting a potential role in reducing HIV transmission by inactivating virus introduced or shed into the cervicovaginal lumen.IMPORTANCE The Lactobacillus-dominated vaginal microbiota is associated with a reduced risk of acquiring and transmitting HIV and other sexually transmitted infections (STIs). Lactic acid is a major organic acid metabolite produced by lactobacilli that acidifies the vagina and has been reported to have inhibitory activity in vitro against bacterial, protozoan, and viral STIs, including HIV infections. However, the anti-HIV properties of lactic acid in native vaginal lumen fluids of women colonized with Lactobacillus spp. have not yet been established. Our study, using native cervicovaginal fluid from women, found that potent and irreversible anti-HIV-1 activity is significantly associated with the concentration of the protonated (acidic, uncharged) form of lactic acid. This work advances our understanding of the mechanisms by which vaginal microbiota modulate HIV susceptibility and could lead to novel strategies to prevent women from acquiring HIV or transmitting the virus during vaginal intercourse and vaginal birth.


Subject(s)
Body Fluids/chemistry , Body Fluids/virology , HIV-1/drug effects , Lactic Acid/metabolism , Vagina/chemistry , Vagina/virology , Adult , Female , HIV-1/physiology , Humans , Microbial Viability/drug effects , Young Adult
11.
Mol Biol Evol ; 35(7): 1626-1637, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29617834

ABSTRACT

Bats have attracted attention in recent years as important reservoirs of viruses deadly to humans and other mammals. These infections are typically nonpathogenic in bats raising questions about innate immune differences that might exist between bats and other mammals. The APOBEC3 gene family encodes antiviral DNA cytosine deaminases with important roles in the suppression of diverse viruses and genomic parasites. Here, we characterize pteropid APOBEC3 genes and show that species within the genus Pteropus possess the largest and most diverse array of APOBEC3 genes identified in any mammal reported to date. Several bat APOBEC3 proteins are antiviral as demonstrated by restriction of retroviral infectivity using HIV-1 as a model, and recombinant A3Z1 subtypes possess strong DNA deaminase activity. These genes represent the first group of antiviral restriction factors identified in bats with extensive diversification relative to homologues in other mammals.


Subject(s)
Chiroptera/genetics , Cytosine Deaminase/genetics , Evolution, Molecular , Host-Pathogen Interactions , Animals , Chiroptera/metabolism , Chiroptera/virology , HIV-1
12.
AIDS ; 30(18): 2787-2793, 2016 11 28.
Article in English | MEDLINE | ID: mdl-27677159

ABSTRACT

OBJECTIVE: Synonymous substitutions K65K/K66K in HIV-1 reverse transcriptase alleviate fitness and fidelity defects in HIV-1 molecular clones harboring thymidine analogue mutations (TAMs); however, their potential for transmission and persistence is unknown. Here, we investigated the temporal appearance of K65K/K66K relative to TAMs in a HIV-1 cohort, their prevalence over time, and their impact on viral fitness in the context of patient-derived reverse transcriptase sequences. METHODS: Retrospective analyses of the temporal appearance and longitudinal prevalence of synonymous substitutions and drug resistance mutations were performed using the British Columbia Centre for Excellence in HIV/AIDS Drug Treatment Program (DTP) database. Plasma-derived HIV-1 from the DTP was used to generate infectious molecular clones. Growth competition assays were performed to determine viral fitness. RESULTS: The prevalence of K65K/K66K in drug-naïve individuals tripled from 11% in 1997 to 37% in 2014 (P < 0.0001, n = 5221), with K66K mainly accounting for the increase. These mutations emerged in drug-treated individuals without TAMs in 14% of the cohort and conferred a fitness advantage in the context of patient-derived multidrug-resistant (MDR) virus in the absence of drug. CONCLUSION: The appearance of K65K/K66K in drug-treated individuals was largely independent of TAMs, suggesting alternative factors are likely associated with their emergence. The increasing K65K/K66K prevalence to over a third of treatment-naïve individuals in the mostly subtype B DTP cohort and their ability to confer a fitness advantage to multidrug-resistant virus might explain the transmission and persistence of virus harbouring K65K/K66K in untreated individuals, and highlights their role in adaptive HIV-1 evolution.


Subject(s)
Amino Acid Substitution , HIV Infections/virology , HIV Reverse Transcriptase/genetics , HIV-1/enzymology , Mutant Proteins/genetics , Mutation, Missense , Adaptation, Biological , Adolescent , Adult , Aged , Aged, 80 and over , British Columbia/epidemiology , Evolution, Molecular , Female , Genotype , HIV Infections/epidemiology , HIV-1/classification , HIV-1/genetics , HIV-1/isolation & purification , Humans , Longitudinal Studies , Male , Middle Aged , Prevalence , Retrospective Studies , Young Adult
13.
Retrovirology ; 10: 35, 2013 Mar 27.
Article in English | MEDLINE | ID: mdl-23537098

ABSTRACT

BACKGROUND: Betaretroviruses infect a wide range of species including primates, rodents, ruminants, and marsupials. They exist in both endogenous and exogenous forms and are implicated in animal diseases such as lung cancer in sheep, and in human disease, with members of the human endogenous retrovirus-K (HERV-K) group of endogenous betaretroviruses (ßERVs) associated with human cancers and autoimmune diseases. To improve our understanding of betaretroviruses in an evolutionarily distinct host species, we characterized ßERVs present in the genomes and transcriptomes of mega- and microbats, which are an important reservoir of emerging viruses. RESULTS: A diverse range of full-length ßERVs were discovered in mega- and microbat genomes and transcriptomes including the first identified intact endogenous retrovirus in a bat. Our analysis revealed that the genus Betaretrovirus can be divided into eight distinct sub-groups with evidence of cross-species transmission. Betaretroviruses are revealed to be a complex retrovirus group, within which one sub-group has evolved from complex to simple genomic organization through the acquisition of an env gene from the genus Gammaretrovirus. Molecular dating suggests that bats have contended with betaretroviral infections for over 30 million years. CONCLUSIONS: Our study reveals that a diverse range of betaretroviruses have circulated in bats for most of their evolutionary history, and cluster with extant betaretroviruses of divergent mammalian lineages suggesting that their distribution may be largely unrestricted by host species barriers. The presence of ßERVs with the ability to transcribe active viral elements in a major animal reservoir for viral pathogens has potential implications for public health.


Subject(s)
Betaretrovirus/isolation & purification , Endogenous Retroviruses/isolation & purification , Animals , Betaretrovirus/classification , Betaretrovirus/genetics , Chiroptera , Cluster Analysis , DNA, Viral/genetics , Endogenous Retroviruses/classification , Endogenous Retroviruses/genetics , Evolution, Molecular , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...