Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1407829, 2024.
Article in English | MEDLINE | ID: mdl-39170740

ABSTRACT

Background: To assess the bioequivalence between Gan & Lee (GL) glargine U300 and Toujeo® regarding pharmacokinetics (PK), pharmacodynamics (PD), and safety in Chinese healthy male participants. Methods: A single-center, randomized, double-blind, single-dose, two-preparation, two-sequence, four-cycle repeated crossover design study was performed to compare GL glargine U300 and Toujeo® in 40 healthy participants. The primary PK endpoints were the area under the curve of glargine metabolites, M1 concentration from 0 to 24 hours (AUC0-24h), and the maximum glargine concentration within 24 hours post-dose (Cmax). The primary PD endpoints were the area under the glucose infusion rate (GIR) curve from 0 to 24 hours (AUCGIR.0-24h) and the maximum GIR within 24 hours post-dose (GIRmax). Results: GL Glargine U300 demonstrated comparable PK parameters (AUC0-24h, Cmax, AUC0-12h, and AUC12-24h of M1) and PD responses [AUCGIR.0-24h, GIRmax, AUCGIR.0-12h, and AUCGIR.12-24h] to those of Toujeo®, as indicated by 90% confidence intervals ranging from 80% to 125%. No significant disparities in safety profiles were observed between the two treatment groups, and there were no reported instances of serious adverse events. Conclusion: The PK, PD, and safety of GL glargine U300 were bioequivalent to that of Toujeo®. Clinical trial registration: https://www.chinadrugtrials.org.cn/, identifier CTR20212419.


Subject(s)
Cross-Over Studies , Healthy Volunteers , Hypoglycemic Agents , Insulin Glargine , Therapeutic Equivalency , Humans , Male , Insulin Glargine/pharmacokinetics , Insulin Glargine/administration & dosage , Adult , Young Adult , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/administration & dosage , Double-Blind Method , Blood Glucose/drug effects , Blood Glucose/analysis , China , Area Under Curve
2.
Cell Death Dis ; 15(1): 6, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177123

ABSTRACT

Glioma cell sensitivity to temozolomide (TMZ) is critical for effective treatment and correlates with patient survival, although mechanisms underlying this activity are unclear. Here, we reveal a new mechanism used by glioma cells to modulate TMZ sensitivity via regulation of SORBS2 and DDR1 genes by super-enhancer RNA LINC02454. We report that LINC02454 activity increases glioma cell TMZ sensitivity by maintaining long-range chromatin interactions between SORBS2 and the LINC02454 enhancer. By contrast, LINC02454 activity also decreased glioma cell TMZ sensitivity by promoting DDR1 expression. Our study suggests a bivalent function for super-enhancer RNA LINC02454 in regulating glioma cell sensitivity to TMZ.


Subject(s)
Brain Neoplasms , Glioma , MicroRNAs , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Enhancer RNAs , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , MicroRNAs/genetics , Cell Proliferation , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL