Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 357: 120797, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574707

ABSTRACT

Phosphate materials (PMs) combine with phosphate solubilizing bacteria play an essential roles in lead (Pb) immobilization, but their resulting ability to reduce Pb bioavailability may vary depending on PMs used. In this study, Pseudomonas edaphica GAU-665 and three PMs: tricalcium phosphate, calcium phytate and nano-hydroxyapatite were respectively encapsulated into bio-beads by sodium alginate, which immobilization efficiency of Pb2+ were 99.11%, 97.76% and 99.02% at initial Pb2+ concentration of 200 mg L-1, respectively. The Pb2+ immobilization performance of bio-beads under different conditions and their organic acids secreted were examined. Most Pb2+ was immobilized by bio-beads through combined functions of adsorption, precipitation, ion exchange and biomineralization, accompanied by the formation of more stable compounds such as Pb3(PO4)2, Pb5(PO4)3OH and Pb5(PO4)3Cl. Meanwhile, pot experimental results indicated that the inoculation of CPhy (calcium phytate) bio-beads with PSB have highest biomass and root growth of oat (Avena sativa L.) in Pb-stressed compared with CK, which increased the content of chlorophyll b (167.51%) in shoot. In addition, the CPhy bio-beads enhance the peroxidase, catalase activities and reduce the malondialdehyde content to alleviating lead physiological toxicity in oat, which reductions the Pb accumulation in shoot (52.06%) and root (81.04%), and increased the residual fraction of Pb by 165.80% in soil. These findings suggest the bio-beads combined with P. edaphica GAU-665 and calcium phytate is an efficient Pb immobilization material and provided feasible way to improve safety agricultural production and Pb-contaminated soil remediation.


Subject(s)
Phosphates , Soil Pollutants , Lead , Pseudomonas , Phytic Acid , Soil , Soil Pollutants/analysis
2.
Antonie Van Leeuwenhoek ; 114(9): 1443-1452, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34272636

ABSTRACT

A Gram-negative aerobic bacterium, strain M30-35 T, was isolated from the rhizosphere of Haloxylon ammodendron in Tengger desert, Gansu province, northwest China. Our previous research indicated that strain M30-35 T can promote the growth of ryegrass (Lolium perenne L.). In this study, strain M30-35 T was subjected to a polyphasic taxonomic study. Phylogenetic analysis of the 16S rRNA gene and two other housekeeping genes (gyrB, rpoD) showed that strain M30-35 T is a member of Pseudomonas anguilliseptica group. The average nucleotide identity (ANI) scores for strains KMM 3042 T and FR1439T were 76.5% and 83.7%, respectively, and DNA-DNA hybridization (DDH) were 21.6% and 26.6%, respectively, and the rates were less than the threshold range for species determination. The dominant cellular fatty acids of strain M30-35 T were C16:0 (22.7%), summed feature 3 (C16:1ω7c and/or C16:1ω6c; 18.5%), summed feature 8 (C18:1ω7c and/or C18:1ω6c; 23.1%). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phospholipid and aminophospholipid and the predominant respiratory quinone was ubiquinone (Q9). On the basis of above data, it can be concluded that strain M30-35 T represents a novel species in the genus Pseudomonas, for which the name Pseudomonas rhizovicinus sp. nov. is proposed. The type strain is M30-35 T (= MCCC 1K03247T = KCTC 52664 T).


Subject(s)
Rhizosphere , Soil Microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids , Phospholipids , Phylogeny , Pseudomonas/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
Plant Physiol Biochem ; 161: 74-85, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33578287

ABSTRACT

Haloxylon ammodendron, a typical xerophyte, tolerates various abiotic stresses and is widely distributed in desert areas. Two PGPR strains, Bacillus sp. WM13-24 and Pseudomonas sp. M30-35, were previously isolated from the rhizosphere of H. ammodendron in Tengger Desert, Gansu province, northwest China. The aim of this study was to investigate the role of M30-35 and WM13-24 in drought stress alleviation of ryegrass (Lolium perenne L.). Under normal condition, both M30-35 and WM13-24 increased shoot fresh and dry weight, chlorophyll content, total nitrogen and phosphorus contents and altered phytohormone distribution compared to control. Moreover, after 7 days of drought stress, WM13-24 and M30-35 enhanced photosynthetic capacity, relative water content, the activities of catalase (CAT) and peroxidase (POD) and proline content, resulted in decreased malondialdehyde (MDA) content, relative membrane permeability (RMP) and H2O2 accumulation; interestingly, the two strains decreased ABA content in leaves. This study demonstrated that the two PGPR strains promoted ryegrass growth and root development via regulating plant hormone distribution and enhanced drought tolerance of ryegrass through improving the activities of antioxidant enzymes, regulating ABA signaling and maintaining plant growth. Our results indicated that PGPR strains from rhizosphere of the desert plant species could be considered as promising bioinoculants for grass plants.


Subject(s)
Lolium , Rhizosphere , China , Droughts , Hydrogen Peroxide
4.
Plant Physiol Biochem ; 151: 166-180, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32222680

ABSTRACT

Bacillus amyloliquefaciens is a non-pathogenic and plant growth-promoting rhizobacterium that enhances plant resistance to drought and diseases. Arabidopsis thaliana is a multipurpose model plant for exploring microorganism-plant interactions and a crucial vegetal tool for molecular research. Non-coding RNAs are RNA molecules involved in the regulation of various biological functions and constitute a research hotspot in the field of plant biology. In this study, the effect of B. amyloliquefaciens treatment on the resistance of A. thaliana to high calcium stress was analyzed. The transcriptome sequencing of A. thaliana roots under four treatment conditions was performed to screen differentially expressed lncRNAs, mRNAs and miRNAs. Functional analysis was also performed to understand the potential mechanism by which B. amyloliquefaciens-regulated lncRNAs, miRNAs and mRNAs affect the resistance of A. thaliana to high calcium stress. The results indicated that B. amyloliquefaciens treatment increased the resistance of A. thaliana to high calcium stress. A set of differentially expressed lncRNAs, mRNAs and miRNAs were screened between the high calcium and control group on one hand, and high calcium and high calcium + B. amyloliquefaciens groups on the other hand. Functional analysis indicated that the differentially expressed mRNAs and miRNA were involved in various biological functions and that transcriptional dysregulation caused by high calcium stress involves metabolic processes rather than defense responses. Conclusively, B. amyloliquefaciens may improve the resistance of A. thaliana to high calcium stress via a lncRNA-miRNA-mRNA regulatory network. These findings will contribute to the development of agriculture in karst regions with high calcium content.


Subject(s)
Arabidopsis/physiology , Bacillus amyloliquefaciens , Calcium/adverse effects , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Arabidopsis/genetics , Arabidopsis/microbiology , Gene Regulatory Networks
5.
Int J Mol Sci ; 19(2)2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29401742

ABSTRACT

Drought and soil salinity reduce agricultural output worldwide. Plant-growth-promoting rhizobacteria (PGPR) can enhance plant growth and augment plant tolerance to biotic and abiotic stresses. Haloxylon ammodendron, a C4 perennial succulent xerohalophyte shrub with excellent drought and salt tolerance, is naturally distributed in the desert area of northwest China. In our previous work, a bacterium strain numbered as M30-35 was isolated from the rhizosphere of H. ammodendron in Tengger desert, Gansu province, northwest China. In current work, the effects of M30-35 inoculation on salt tolerance of perennial ryegrass were evaluated and its genome was sequenced to identify genes associated with plant growth promotion. Results showed that M30-35 significantly enhanced growth and salt tolerance of perennial ryegrass by increasing shoot fresh and dry weights, chlorophyll content, root volume, root activity, leaf catalase activity, soluble sugar and proline contents that contributed to reduced osmotic potential, tissue K⁺ content and K⁺/Na⁺ ratio, while decreasing malondialdehyde (MDA) content and relative electric conductivity (REC), especially under higher salinity. The genome of M30-35 contains 4421 protein encoding genes, 12 rRNA, 63 tRNA-encoding genes and four rRNA operons. M30-35 was initially classified as a new species in Pseudomonas and named as Pseudomonas sp. M30-35. Thirty-four genes showing homology to genes associated with PGPR traits and abiotic stress tolerance were identified in Pseudomonas sp. M30-35 genome, including 12 related to insoluble phosphorus solubilization, four to auxin biosynthesis, four to other process of growth promotion, seven to oxidative stress alleviation, four to salt and drought tolerance and three to cold and heat tolerance. Further study is needed to clarify the correlation between these genes from M30-35 and the salt stress alleviation of inoculated plants under salt stress. Overall, our research indicated that desert shrubs appear rich in PGPRs that can help important crops tolerate abiotic stress.


Subject(s)
Bacterial Proteins/genetics , Chenopodiaceae/microbiology , Genome, Bacterial , Lolium/microbiology , Plant Proteins/genetics , Plant Roots/microbiology , Rhizosphere , Adaptation, Physiological/genetics , Bacterial Proteins/metabolism , Biomass , Catalase/genetics , Catalase/metabolism , Chenopodiaceae/growth & development , Chenopodiaceae/metabolism , Chlorophyll/biosynthesis , Droughts , Indoleacetic Acids/metabolism , Lolium/genetics , Lolium/growth & development , Lolium/metabolism , Malondialdehyde/metabolism , Molecular Sequence Annotation , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Proline/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Salinity , Soil Microbiology , Stress, Physiological , Symbiosis
6.
Int J Mol Sci ; 18(12)2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29232909

ABSTRACT

Water retaining agent (WRA) is widely used for soil erosion control and agricultural water saving. Here, we evaluated the effects of the combination of beneficial soil bacterium Bacillus amyloliquefaciens strain GB03 and WRA (the compound is super absorbent hydrogels) on drought tolerance of perennial ryegrass (Lolium perenne L.). Seedlings were subjected to natural drought for maximum 20 days by stopping watering and then rewatered for seven days. Plant survival rate, biomass, photosynthesis, water status and leaf cell membrane integrity were measured. The results showed that under severe drought stress (20-day natural drought), compared to control, GB03, WRA and GB03+WRA all significantly improved shoot fresh weight, dry weight, relative water content (RWC) and chlorophyll content and decreased leaf relative electric conductivity (REC) and leaf malondialdehyde (MDA) content; GB03+WRA significantly enhanced chlorophyll content compared to control and other two treatments. Seven days after rewatering, GB03, WRA and GB03+WRA all significantly enhanced plant survival rate, biomass, RWC and maintained chlorophyll content compared to control; GB03+WRA significantly enhanced plant survival rate, biomass and chlorophyll content compared to control and other two treatments. The results established that GB03 together with water retaining agent promotes ryegrass growth under drought conditions by improving survival rate and maintaining chlorophyll content.


Subject(s)
Bacillus amyloliquefaciens/physiology , Chlorophyll/metabolism , Hydrogels/pharmacology , Lolium/growth & development , Soil Microbiology , Biomass , Droughts , Lolium/metabolism , Malondialdehyde/metabolism , Photosynthesis , Plant Leaves/metabolism , Stress, Physiological/drug effects , Water
7.
Int J Syst Evol Microbiol ; 67(2): 454-459, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27902308

ABSTRACT

An alkaliphilic strain designed MN-1T was isolated from a desert sand sample collected from Tengger desert, north-western China. To delineate its taxonomic position, this Gram-stain-negative, rod-shaped, strictly aerobic bacterium was subjected to a polyphasic taxonomic study. Growth was observed at temperatures from 4 to 37 °C (optimum 30-32 °C), at salinities from 0 to 2 % (optimum 1 %) and at pH from 6.5 to 12.0 (optimum 7.0-9.0). Phylogenetic analysis based on 16S rRNA gene sequencing showed that strain MN-1T was a member of the genus Altererythrobacterbut could be distinguished from recognized species of this genus. Compared to the reference strains, the novel strain was flagellated and motile by means of polar flagella. The predominant respiratory quinone was ubiquinone-10 and the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, phosphatidylglycerol, phosphatidylcholine, one unidentified glycolipid, one unidentified phospholipid and four unidentified lipids. The predominant fatty acids were C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. These chemotaxonomic traits were in agreement with the characteristics of the genus Altererythrobacter. Strain MN-1T was most closely related to Altererythrobacter xinjiangensis S3-63T (96.9 % 16S rRNA gene sequence similarity), followed by Altererythrobacter dongtanensis JM27T (96.4 %) and Altererythrobacter marinus H32T (96.1 %). The G+C content of the genomic DNA of strain MN-1T was 67.0 mol%. On the basis of data from this polyphasic taxonomic study, strain MN-1T is proposed as the type strain of a novel species of the genus Altererythrobacter, named as Altererythrobacter soli sp. nov. (=KCTC 52135T=MCCC 1K02066T).


Subject(s)
Alphaproteobacteria/classification , Desert Climate , Phylogeny , Soil Microbiology , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Glycolipids/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Silicon Dioxide , Ubiquinone/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...