Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 280: 116574, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38875822

ABSTRACT

Aflatoxin B1 (AFB1) is commonly found in feed ingredients and foods all over the world, posing a significant threat to food safety and public health in animals and humans. Lactobacillus salivarius (L. salivarius) was recorded to improve the intestinal health and performance of chickens. However, whether L. salivarius can alleviate AFB1-induced hepatotoxicity in geese was unknown. A total of 300 Lande geese were randomly assigned to five groups: control group, AFB1 low-dose group (L), L. salivarius+AFB1 low-dose group (LL), AFB1 high dosage groups (H), L. salivarius+AFB1 high dosage groups (LH), respectively. The results showed that the concentrations of ALT, AST, and GGT significantly increased after exposure to AFB1. Similarly, severe damage of hepatic morphology was observed including the hepatic structure injury and inflammatory cell infiltration. The oxidative stress was evidenced by the elevated concentrations of MDA, and decreased activities of GSH-Px, GSH and SOD. The observation of immunofluorescence, real-time PCR, and western blotting showed that the expression of PINK1 and the value of LC3II/LC3I were increased, but that of p62 significantly decreased after AFB1 exposure. Moreover, the supplementation of L. salivarius effectively improved the geese performance, ameliorated AFB1-induced oxidative stress, inhibited mitochondrial mitophagy and enhanced the liver restoration to normal level. The present study demonstrated that L. salivarius ameliorated AFB1-induced the hepatotoxicity by decreasing the oxidative stress, and regulating the expression of PINK1/Parkin-mediated mitophagy in the mitochondria of the geese liver. Furthermore, this investigation suggested that L. salivarius might serve as a novel and safe additive for preventing AFB1 contamination in poultry feed.

2.
Poult Sci ; 103(8): 103904, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38880050

ABSTRACT

Aflatoxin B1 (AFB1) is a prevalent mycotoxin present in feed ingredients. In this study, we investigated the effects of Lactobacillus salivarius (L. salivarius) on the Landes geese exposed to AFB1. The 300 one-day-old Landes geese were randomly divided into five groups: The control group received a basic diet, while the other groups were fed a basic diet supplemented with 10 µg/kg AFB1, 10 µg/kg AFB1+ 4*108 cfu/g L. salivarius, 50 µg/kg AFB1, and 50 µg/kg AFB1 + 4*108 cfu/g L. salivarius for 63 d. Results showed that high level AFB1 exposure significantly decreased final BW and ADG, increased feed/gain ratio (F/G) and liver index (P < 0.05). L. salivarius improved levels of IL-1, IL-6, and IL-12 under low level of AFB1 exposure (P < 0.05), along with similar trends observed in serum IgA, IgG, IgM, T3, T4, TNF-ɑ, and EDT (P < 0.05). AFB1 exposure reduced jejunum villus high and villus high/crypt depth ratio, and suppressed expression of ZO-1, Occludin, and Claudin-1 mRNA, and significant improved with L. salivarius supplementation under low level AFB1 exposure (P < 0.05). AFB1 significantly increased expression levels of TLR3 and NF-kB1, with supplementation of L. salivarius showing significant improvement under low AFB1 exposure (P < 0.05). Cecal microbiota sequencing revealed that under low level AFB1 exposure, supplementation with L. salivarius increased the abundance of Bacteroidetes and Lactococcus. In summary, supplementation with 4*108 cfu/g L. salivarius under 10 µg/kg AFB1 exposure improved growth performance and immune capacity, enhanced jejunum morphology, reduced liver inflammation, altered the cecal microbial structure, and positively affected the growth and development of geese.

3.
Animals (Basel) ; 14(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791629

ABSTRACT

The purpose of this study was to evaluate the effect of fermented mixed feed (FMF) (soybean meal-rapeseed meal-corn bran (6:3:1, m/m/m)) on the growth performance, intestinal microbial communities, and metabolomes of squabs. One hundred and eighty 1-day-old squabs were randomly allocated to two groups, each containing six replicates of fifteen squabs cared for by 60 pairs of breeding pigeons secreting crop milk. Each pair of breeding pigeons cared for three squabs. The control group was fed a basal diet, while the experimental group was fed the basal diet containing 5% FMF. The results showed that daily weight gain, carcass weight, villus height, and the mRNA level of ZO-1 in the ileum were increased in the birds fed FMF compared to the control squabs (p < 0.05). Greater abundances of beneficial bacteria such as Lactobacillus, Bifidobacteria, and Bacillus as well as fewer harmful bacteria (i.e., Enterococcus, Veillonella, and Corynebacterium) in the ilea of squabs fed FMF. Six differential metabolites were identified in the FMF-treated squabs; one metabolite was increased (ω-salicoyisalicin) and five were decreased (3-benzoyloxy-6-oxo-12-ursen-28-oic acid, estradiol-17-phenylpropionate, aminotriazole, phosphatidyl ethanolamine (22:6/0:0), and 1-arachidonoylglycerophosphoinositol). Positive correlations were observed between the abundance of Lactobacillus and villus height. Overall, FMF treatment improved both growth and intestinal health in pigeons, suggesting potential benefits for pigeon production.

4.
BMC Genomics ; 25(1): 505, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778258

ABSTRACT

BACKGROUND: In day-old Hungarian white goose goslings, there is a noticeable difference in dorsal down coloration between males and females, with females having darker dorsal plumage and males having lighter plumage. The ability to autosex day-old goslings based on their dorsal down coloration is important for managing them efficiently and planning their nutrition in the poultry industry. The aim of this study was to determine the biological and genetic factors underlying this difference in dorsal down colorationthrough histological analysis, biochemical assays, transcriptomic profiling, and q‒PCR analysis. RESULTS: Tissue analysis and biochemical assays revealed that compared with males, 17-day-old embryos and day-old goslings of female geese exhibited a greater density of melanin-containing feather follicles and a greater melanin concentration in these follicles during development. Both female and male goslings had lower melanin concentrations in their dorsal skin compared to 17-day-old embryos. Transcriptome analysis identified a set of differentially expressed genes (DEGs) (MC1R, TYR, TYRP1, DCT and MITF) associated with melanogenesis pathways that were downregulated or silenced specifically in the dorsal skin of day-old goslings compared to 17-day-old embryos, affecting melanin synthesis in feather follicles. Additionally, two key genes (MC1R and MITF) associated with feather coloration showed differences between males and females, with females having higher expression levels correlated with increased melanin synthesis and darker plumage. CONCLUSION: The expression of multiple melanogenesis genes determines melanin synthesis in goose feather follicles. The dorsal down coloration of day-old Hungarian white goose goslings shows sexual dimorphism, likely due to differences in the expression of the MC1R and MITF genes between males and females. These results could help us better understand why male and female goslings exhibit different plumage patterns.


Subject(s)
Geese , Gene Expression Profiling , Melanins , Pigmentation , Sex Characteristics , Animals , Female , Male , Geese/genetics , Geese/metabolism , Melanins/metabolism , Pigmentation/genetics , Feathers/metabolism , Feathers/growth & development , Transcriptome
5.
Heliyon ; 10(8): e29784, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681589

ABSTRACT

This study investigated the effects of partially replacing corn with elephant grass dry matter (air drass) on growth performance, serum parameters, carcass traits, and nutrient digestibility in geese. A total of 360 one-day-old Hortobágyi geese were randomly divided into three groups: control (basic diet), 12 % elephant grass, and 24 % elephant grass. The geese were raised for 70 days. The results showed that compared to the control, 12 % elephant grass had no adverse effects on final body weight, feed/gain ratio, mortality, serum liver and kidney function markers. However, 24 % elephant grass significantly reduced the final body weight (P < 0.001) and feed/gain ratio (P = 0.026) compared to the control group. Both experiment groups had decreased serum aspartate aminotransferase (P < 0.001), alanine aminotransferase (P < 0.001), alkaline phosphatase (P < 0.001), triglycerides (P < 0.001), and total cholesterol (P < 0.001). The addition of 12 % and 24 % elephant grass reduced abdominal fat (P = 0.002), but it had no significant effect on slaughter rate, half-bore rate, full-bore rate, breast muscle rate and leg muscle rate. For nutrient digestibility, 12 % elephant grass improved neutral detergent fiber digestibility compared to the control group (P = 0.026). The 24 % grass group had reduced Ca absorption (P = 0.020). Overall, the findings suggest that partially replacing corn with 12 % elephant grass in goose diet can maintain growth performance and carcass traits.It also has no negative effect on nutrient digestibility while improving serum parameters.

6.
J Microbiol Biotechnol ; 34(1): 224-231, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38282412

ABSTRACT

The proteins carried by the extracellular vesicles of Lactobacillus salivarius SNK-6 (LsEVs) were identified to provide a foundation for further explorations of the probiotic activities of L. salivarius SNK-6. LsEVs were isolated from the culture media of L. salivarius SNK-6 and morphological analysis was conducted by scanning electron microscopy. Subsequent transmission electron microscopy and nanoparticle tracking analysis were performed to assess the morphology and particle size of the LsEVs. In addition, the protein composition of LsEVs was analyzed using silver staining and protein mass spectrometry. Finally, internalization of the identified LsEVs was confirmed using a confocal microscope, and enzyme-linked immunosorbent assay was employed to analyze the levels of inflammatory cytokines in LPS-challenged RAW264.7 cells. The results revealed that the membrane-enclosed LsEVs were spherical, with diameters ranging from 100-250 nm. The LsEVs with diameters of 111-256 nm contained the greatest amount of cargo. In total, 320 proteins (10-38 kD) were identified in the LsEVs and included anti-inflammatory molecules, such as PrtP proteinase, co-chaperones, and elongation factor Tu, as well as some proteins involved in glycolysis/gluconeogenesis, such as fructose-1,6-bisphosphate aldolase. Enrichment analysis showed these proteins to be related to the terms "metabolic pathway," "ribosome," "glycolysis/gluconeogenesis," "carbohydrate metabolism," and "amino acid metabolism." Furthermore, the LsEVs were internalized by host liver cells and can regulate inflammation. These findings confirm that LsEVs contain various functional proteins that play important roles in energy metabolism, signal transduction, and biosynthesis.


Subject(s)
Extracellular Vesicles , Ligilactobacillus salivarius , Humans , Proteomics , Inflammation , Cytokines
7.
Virol J ; 20(1): 215, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730633

ABSTRACT

BACKGROUND: Echovirus 30 is prone to cause hand-foot-and-mouth disease in infants and children. However, molecular epidemiologic information on the spread of E30 in southwestern China remains limited. In this study, we determined and analyzed the whole genomic sequences of E30 strains isolated from the stools of patients with hand-foot-and-mouth disease in Yunnan Province, China, in 2019. METHODS: E30 isolates were obtained from fecal samples of HFMD patients. The whole genomes were sequenced by segmented PCR and analyzed for phylogeny, mutation and recombination. MEGA and DNAStar were used to align the present isolates with the reference strains. The VP1 sequence of the isolates were analyzed for selection pressure using datamonkey server. RESULTS: The complete genome sequences of four E30 were obtained from this virus isolation. Significant homologous recombination signals in the P2-3'UTR region were found in all four isolates with other serotypes. Phylogenetic analysis showed that the four E30 isolates belonged to lineage H. Comparison of the VP1 sequences of these four isolates with other E30 reference strains using three selection pressure analysis models FUBAR, FEL, and MEME, revealed a positive selection site at 133rd position. CONCLUSIONS: This study extends the whole genome sequence of E30 in GenBank, in which mutations and recombinations have driven the evolution of E30 and further improved and enriched the genetic characteristics of E30, providing fundamental data for the prevention and control of diseases caused by E30. Furthermore, we demonstrated the value of continuous and extensive surveillance of enterovirus serotypes other than the major HFMD-causing viruses.


Subject(s)
Foot-and-Mouth Disease , Hand, Foot and Mouth Disease , Child , Animals , Infant , Humans , Phylogeny , China/epidemiology , Enterovirus B, Human/genetics , Hand, Foot and Mouth Disease/epidemiology
8.
Front Vet Sci ; 10: 1210706, 2023.
Article in English | MEDLINE | ID: mdl-37397002

ABSTRACT

Introduction: The aim of this study was to investigate the effects of adding whole-plant ensiled corn stalks (WECS) to the diet of Holdorbagy geese on their growth performance, serum parameters, and cecal microbiota. Geese farming is an important agricultural practice, and optimizing their diet can contribute to better growth and health outcomes. However, there is limited research on the utilization of WECS as a feed source for geese. Understanding the potential effects of WECS on growth, blood parameters, and cecal microbiota can provide valuable insights into its feasibility and impact on geese farming practices. Methods: A total of 144 six-week-old Holdorbagy geese were randomly assigned to one of three groups: a control group (0% WECS), a group fed 15% WECS and 85% concentrated feed (15% WECS), and a group fed 30% WECS and 70% concentrated feed (30% WECS). The trial period lasted for three weeks, during which the growth performance, serum parameters, and cecal microbiota were assessed. Results: The results revealed significant findings in different aspects. Firstly, the feed-to-gain ratio (F/G ratio) of the 15% WECS group was significantly higher than that of the control group (p<0.05), indicating potential challenges in feed efficiency. Additionally, the average daily feed intake (ADFI) of both the 15% and 30% WECS groups was significantly higher than that of the control group (p<0.05), suggesting increased appetite or palatability of the diet containing WECS. In terms of serum parameters, the level of lactate dehydrogenase (LDH) in the 30% WECS group was significantly lower than that in the control group (p<0.05). Moreover, there was a tendency for increasing Fe levels and decreasing Zn levels with higher levels of WECS supplementation, although the differences were not statistically significant (p<0.05). Furthermore, the principal coordinate analysis showed significant differences in the composition of cecal microbiota among the three groups (p < 0.01). The observed_species, Shannon, and Pielou_e indices of the 30% WECS group were significantly higher than those of the 0% and 15% WECS groups (p<0.05), while the Simpson index of the 15% WECS group was significantly lower than that of the control group (p<0.05). Discussion: The results indicate that the addition of WECS to the geese diet has both positive and negative effects. The study suggests that WECS can be a long-term stable feed source for geese, which can contribute to reducing feeding costs. However, it is important to monitor the amount of WECS added as it can affect the absorption of Zn by geese. Supplementation of Zn in the diet might be necessary to meet the needs of geese. Notably, adding 30% WECS to the diet can increase the richness, evenness, and diversity of the cecal microbiota, indicating potential benefits to gut health. In conclusion, this study highlights the potential of WECS as a feed source for geese. It provides valuable insights into the effects of WECS on growth performance, serum parameters, and cecal microbiota. These findings contribute to optimizing geese farming practices, improving feed utilization, and enhancing overall productivity and well-being of geese. Further research is needed to determine the optimal inclusion level of WECS and to explore strategies for mitigating any negative effects.

9.
Front Microbiol ; 14: 1185218, 2023.
Article in English | MEDLINE | ID: mdl-37303790

ABSTRACT

Bile acids(BAs) are important components of bile and play a significant role in fat metabolism. However, there is currently no systematic evaluation of the use of BAs as feed additives for geese.This study aimed to investigate the effects of adding BAs to goose feed on growth performance, lipid metabolism, intestinal morphology, mucosal barrier function, and cecal microbiota. A total of 168 28-day-old geese were randomly assigned to four treatment groups and fed diets supplemented with 0, 75, 150, or 300 mg/kg of BAs for 28 days. The addition of 75 and 150 mg/kg of BAs significantly improved the feed/gain (F/G) (p < 0.05).The addition of BAs decreased abdominal fat percentage and serum total cholesterol (TC) levels, with 150 mg/kg of BAs significantly reducing serum triglyceride levels and increased expression of Farnesoid X Receptor (FXR) mRNA in the liver(p < 0.05), 300 mg/kg of BAs significantly increasing the expression level of liver peroxisome proliferator-activated receptor α (PPARα) (p < 0.05). In terms of intestinal morphology and mucosal barrier function, 150 mg/kg of BAs significantly increased villus height (VH) and VH/crypt depth (CD) in the jejunum (p < 0.05). The addition of 150 and 300 mg/kg of BAs significantly reduced the CD in the ileum, while increasing VH and VH/CD (p<0.05). Additionally, the addition of 150 and 300 mg/kg of BAs significantly increased the expression levels of zonula occludens-1 (ZO-1) and occludin in the jejunum. Simultaneously 150mg/kg and 300mg/kg BAs increased the total short-chain fatty acids (SCFA) concentrations in the jejunum and cecum(p < 0.05).Supplementation with BAs resulted in a significant increase in the ɑ-diversity of cecal microbiota and a decrease in the abundance of Proteobacteria in the cecum. The addition of 150 mg/kg of BAs significantly reduced the abundance of Bacteroidetes and increased the abundance of Firmicutes. Moreover,Linear discriminant analysis Effect Size analysis (LEfSe) showed that the abundances of bacteria producing SCFA and bile salt hydrolases (BSH) were increased in the BAs-treated group. Furthermore, Spearman's analysis showed that the genus Balutia, which is negatively correlated with visceral fat area, was positively correlated with serum high-density lipoprotein cholesterol (HDL-C), while Clostridium was positively correlated with intestinal VH and VH/CD. In conclusion, BAs can be considered an effective feed additive for geese, as they increased SCFA concentration, improve lipid metabolism and intestinal health by enhancing the intestinal mucosal barrier, improving intestinal morphology, and altering the cecal microbiota structure.

10.
Anim Genet ; 54(5): 628-631, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37381668

ABSTRACT

This study aimed to investigate the role of the LCORL gene in regulating the growth performance of Zhedong white (ZDW) geese, belonging to the swan geese (Anser cygnoides), and identify possible selective signatures in diverse goose breeds. Single nucleotide polymorphisms around LCORL were genotyped, and their associations with body-size-related (BSR) traits were estimated. The results showed that the genotyped loci upstream of LCORL were significantly related to the body weight and breast width of ZDW geese aged 10 weeks (p < 0.05). A genome scan comparing expected heterozygosity among different breeds identified a ~150 kb long genomic region with extremely low heterozygosity downstream of LCORL among swan geese. Further, significant associations of variants within the low heterozygosity region among ZDW geese with BSR traits, including body weight, body length and breast width (p < 0.05) were also detected. Overall, mutations adjacent to LCORL were related to the growth performance of swan geese, and the significant effects of variants in a low-heterozygosity region on BSR traits provided valuable insights into the molecular mechanism of artificial selection reshaping body stature in swan geese.


Subject(s)
Geese , Polymorphism, Single Nucleotide , Animals , Geese/genetics , Mutation , Body Weight/genetics
11.
Anim Biotechnol ; 34(4): 1170-1178, 2023 Nov.
Article in English | MEDLINE | ID: mdl-34928784

ABSTRACT

Insulin-like growth factor 2 (IGF2) belongs to the member of the insulin-like growth factors family, which plays key roles in animal growth, differentiation and proliferation, as well as reproduction and the regulation of ovarian follicle development. However, little is known about the goose IGF2 gene. In this study, a 1879 bp fragment that covered the complete coding region (CDS) of goose IGF2 cDNA was identified for the first time. The cDNA consists of an open reading frame of 574 nucleotides with the capacity to encode a prepro-IGF-II protein of 187 amino acids, which comprises a signal peptide (24 residues), IGF-II peptide (67 residues), and C-terminal peptide (96 residues), and is closely related to that of chicken. qPCR indicates that the goose IGF2 mRNA is differentially expressed in all examined tissues of fertilized eggs (28 days) and laying Zhedong White geese (270 days). Two novel single nucleotide polymorphisms (SNPs) were detected in exon 1 (G63A, Chr2: G26541617A) and intron 1 (G38A, Chr2: G26541479A) regions, and the synonymous mutation G63A showed a significant association with egg numbers (E180d) of Sanhua goose population (p < 0.05). All the information derived from this study could be valuable and facilitate further studies on the functions of goose IGF2 gene.


Subject(s)
Geese , Insulin-Like Growth Factor II , Female , Animals , Geese/genetics , Amino Acid Sequence , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , DNA, Complementary/genetics , Polymorphism, Single Nucleotide/genetics , Cloning, Molecular
12.
Anim Biotechnol ; 34(7): 3261-3266, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36001379

ABSTRACT

Insulin-like growth factors 2 (IGF2) is an insulin-like growth factor that plays a major role in animal growth, cell proliferation and differentiation, as well as reproduction. IGF2 is well-known to be a candidate gene of growth and reproductive traits in many agricultural animals. Our previous study revealed that the G63A (Chr2: G26541617A) mutation within IGF2 exon 1 showed a significant association with egg numbers (E180d) of Sanhua goose population (p < 0.05). However, little work focus on the correlation between the IGF2 mutations and goose growth traits. In this study, qPCR indicated that the IGF2 mRNA highly expressed in leg muscle, liver, ovary and pituitary gland. Meanwhile, association analysis showed that the G63A mutation was significantly associated with the body weight of first-hatched Zhedong-White geese (BW0, p < 0.05), and strongly significantly associated with the BW2, BW4, BW6, BW8 and BW10 (p < 0.01). The GG homozygous had the lowest BW (from 4 weeks to 10 weeks) than those of AA and AG genotypes (p < 0.01), and the allele A was also positively correlated with the BW of the Zhedong-White goose population. Therefore, the G63A mutation in IGF2 may be an important genetic marker for goose breeding.


Subject(s)
Geese , Female , Animals , Geese/genetics , Genotype , Alleles , Phenotype , Mutation
13.
Cells ; 11(24)2022 12 19.
Article in English | MEDLINE | ID: mdl-36552896

ABSTRACT

Lactobacillus spp., as probiotics, have shown efficacy in alleviating nonalcoholic fatty liver disease (NAFLD). Here, we screened a new probiotic strain, Lactobacillus salivarius SNK-6 (L. salivarius SNK-6), which was isolated from the ileum of healthy Xinyang black-feather laying hens in China. We investigated the beneficial activity of L. salivarius SNK-6 in a NAFLD model in laying hens and found that L. salivarius SNK-6 inhibited liver fat deposition and decreased serum triglyceride levels and activity of aspartate transaminase and alanine transaminase. MBOAT2 (membrane-bound O-acyltransferase domain containing 2) was directly targeted by miR-130a-5p, which was downregulated in the liver of NAFLD laying hens but reversed after L. salivarius SNK-6 treatment. Downregulation of MBOAT2, L. salivarius SNK-6 supplementation in vivo, and L. salivarius SNK-6 cell culture treatment in vitro suppressed the mRNA expression of genes involved in the PPAR/SREBP pathway. In addition, 250 metabolites were identified in the supernatants of L. salivarius SNK-6 culture media, and most of them participated in metabolic pathways, including amino acid, carbohydrate, and lipid metabolism. Targeted metabolomic analysis revealed that acetate, butyrate, and propionate were the most abundant short-chain fatty acids, while cholic acid, ursodeoxycholic acid, chenodeoxycholic acid, and tauroursodeoxycholic acid were the four most-enriched bile acids among L. salivarius SNK-6 metabolites. This may have contributed to the reparative effect of L. salivarius SNK-6 in the NAFLD chicken model. Our study suggested that L. salivarius SNK-6 alleviated liver damage partly via the miR-130a-5p/MBOAT2 signaling pathway.


Subject(s)
Ligilactobacillus salivarius , MicroRNAs , Non-alcoholic Fatty Liver Disease , Animals , Female , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Lipid Metabolism/genetics , Chickens/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
14.
Front Vet Sci ; 9: 1006318, 2022.
Article in English | MEDLINE | ID: mdl-36406074

ABSTRACT

The study aimed to investigate the effects of honeysuckle extract (HE) on growth performance, serum biochemical indexes, immune organ indexes, gut morphology, and gut microbes in geese. A total of 180 28-day-old Holdobaki geese were randomly divided into three groups. Each group contained 6 replicates (10 geese, with 5 males and 5 females). The BD group was fed the basal diet, the HE1 group was fed the basal diet supplemented with 1 g/kg of HE, and the HE2 group was fed the basal diet supplemented with 2 g/kg of HE. The experiment lasted for 42 days. The results showed that, compared with the BD group, the average daily gain (ADG) of the HE1 and HE2 groups tended to increase (0.05 < P < 0.10), but the average daily feed intake (ADFI) and final body weight (BW) did not differ significantly, and the feed/gain ratio (F/G) was significantly lower (P < 0.01). The bursa index and the thymus index tended to increase (0.05 < P < 0.10), and serum immunoglobulin A (IgA) and immunoglobulin G (IgG) levels increased significantly (P < 0.05). In the HE1 and HE2 groups, the crypt depth (CD) in the jejunum tended to decrease (0.05 < P < 0.10), and the villus height/crypt depth ratio (V/C) increased significantly in the jejunum and the ileum (P < 0.05). According to 16sRNA microbial community diversity analysis, Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria were the dominant phyla. The abundance of Firmicutes was significantly decreased (P < 0.01), while that of Bacteroidetes was significantly increased (P < 0.01), in the HE1 and HE2 groups compared with the BD group. Bacteroides barnesiae, Subdoligranulum variabile, Bacteroides plebeius, and Faecalibacterium prausnitzii were the dominant species, and the abundance of B. plebeius and F. prausnitzii was significantly increased (P < 0.05). According to the LEfSe analysis, BD enriched g_Dorea and g_Dehalobacterium; HE1 enriched g_Faecalibacterium, g_Dialister, g_Prevotella, g_Megamonas, g_Phascolarctobacterium, g_Paraprevotella, g_Anaerostipes, g_Staphylococcus, g_Odoribacter, g_Succinivibrio, and g_Sutterella; and HE2 enriched g_Parabacteroides, g_Olsenella, g_human, and g_Rikenella. According to the Spearman correlation analysis, Bacteroides plebeius was positively correlated with final BW, ADG, IgA, IgG, VH (ileum), and V/C (ileum) and was negatively correlated with F/G and CD (ileum); Ruminococcus gnavus was negatively correlated with final BW, ADG, IgA, and IgG. HE supplementation at 1 g/kg improved growth performance, immune performance, gut morphology, and cecal microbes.

15.
Front Cell Infect Microbiol ; 12: 971933, 2022.
Article in English | MEDLINE | ID: mdl-36250053

ABSTRACT

During the COVID-19 pandemic, there have been an increasing number of COVID-19 patients with cavitary or cystic lung lesions, re-positive or long-term positive nucleic acid tests, but the mechanism is still unclear. Lung cavities may appear at long time interval from initial onset of coronavirus infection, generally during the absorption phase of the disease. The main histopathological characteristic is diffuse alveolar damage and may have more severe symptoms after initial recovery from COVID-19 and an increased mortality rate. There are many possible etiologies of pulmonary cavities in COVID-19 patients and we hypothesize that occult SARS-CoV-2, in the form of biofilm, is harbored in the airway lacuna with other pathogenic microorganisms, which may be the cause of pulmonary cavities and repeated and long-term positive nucleic acid tests.


Subject(s)
COVID-19 , Nucleic Acids , Tuberculosis, Pleural , Tuberculosis, Pulmonary , Biofilms , Humans , Lung/pathology , Pandemics , SARS-CoV-2 , Tuberculosis, Pulmonary/pathology
16.
Gene ; 834: 146612, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35618220

ABSTRACT

Although graylag geese (A. anser) showed similar plumages of white, grey, and white with grey patches compared to those in swan geese (A. cygnoides), it was believed the substantial molecular mechanism for plumage variations were different. To date, studies on genes responsible for diverse plumages among graylag geese were limited and causal mutations remain unknown. In this study, genomes from 57 individuals belonging to six breeds showing different plumages were sequenced at ∼10X depth. Firstly, the allele frequency differences (AFD) of variants on the scaffold394 (NW_013185915.1) between grey and white goose breeds (A. anser) was calculated and a genomic region between 768,290-779,889 bp was detected to carry candidate variants associated with plumages, including one SNP (g. 775,151G > T, ∼18.6 kb upstream of EDNRB2) found to be fixed in white geese. This region was overlapped with the one detected by the haplotype-based sweep analysis, in which significant signals defined a candidate region of 736,610-820,622 bp on the same scaffold. Results from the transcriptomic data showed that expression levels of EDNRB2 and many other melanogenesis-related genes were significantly decreased among white geese compared to that in grey geese, especially at late embryonic stages (>E15). Modifications at transcriptional levels might result in abnormal melanocyte developments and thus the white plumages when they grow up. In addition, a frameshift mutation (C > -) in exon4 of MLANA gene on scaffold176 (NW_013185876.1) was suggested as the causal mutation for sex-linked dilution phenotype in graylag geese although this requires more demonstration experiments. Together with observed white plumages caused by EDNRB2 mutations in coding regions among swan geese and chicken, our study provided new examples to study the parallel evolution.


Subject(s)
Geese , Genomics , Animals , Base Sequence , Geese/genetics , Haplotypes , Mutation
17.
Front Immunol ; 13: 827953, 2022.
Article in English | MEDLINE | ID: mdl-35479075

ABSTRACT

Background: Inherited susceptibility and environmental carcinogens are crucial players in lung cancer etiology. The lung microbiome is getting rising attention in carcinogenesis. The present work sought to investigate the microbiome in lung cancer patients affected by familial lung cancer (FLC) and indoor air pollution (IAP); and further, to compare host gene expression patterns with their microbiome for potential links. Methods: Tissue sample pairs (cancer and adjacent nonmalignant tissue) were used for 16S rRNA (microbiome) and RNA-seq (host gene expression). Subgroup microbiome diversities and their matched gene expression patterns were analyzed. Significantly enriched taxa were screened out, based on different clinicopathologic characteristics. Results: Our FLC microbiome seemed to be smaller, low-diversity, and inactive to change; we noted microbiome differences in gender, age, blood type, anatomy site, histology type, TNM stage as well as IAP and smoking conditions. We also found smoking and IAP dramatically decreased specific-OTU biodiversity, especially in normal lung tissue. Intriguingly, enriched microbes were in three categories: opportunistic pathogens, probiotics, and pollutant-detoxication microbes; this third category involved Sphingomonas, Sphingopyxis, etc. which help degrade pollutants, but may also cause epithelial damage and chronic inflammation. RNA-seq highlighted IL17, Ras, MAPK, and Notch pathways, which are associated with carcinogenesis and compromised immune system. Conclusions: The lung microbiome can play vital roles in carcinogenesis. FLC and IAP subjects were affected by fragile lung epithelium, vulnerable host-microbes equilibrium, and dysregulated immune surveillance and response. Our findings provided useful information to study the triple interplay among environmental carcinogens, population genetic background, and diversified lung microbiome.


Subject(s)
Carcinogens, Environmental , Lung Neoplasms , Microbiota , Carcinogenesis/pathology , Carcinogens, Environmental/pharmacology , Gene Expression , Humans , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Microbiota/physiology , RNA, Ribosomal, 16S/genetics
18.
Reprod Biol ; 22(2): 100640, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35429808

ABSTRACT

Forkhead box L2 (FOXL2) is a forkhead transcription factor essential for proper reproductive function in females and plays a crucial role in ovarian development in many species of vertebrates. However, little research on goose FOXL2 gene has been conducted. In this study, the cDNA and genomic DNA sequences of goose FOXL2 gene were cloned and characterized. The goose FOXL2 is a single exon gene and contains one open reading frame of 918 bp encoding a protein of 305 amino acids. Bioinformatics analysis displays that the deduced FOXL2 amino acid sequence contains the highly conserved forkhead box domain, which shares greatest similarity to avian species, especially to that of ducks and chicken. RT-qPCR analysis indicates that the FOXL2 mRNA is widely expressed in all examined tissues of fertilized female eggs (28 days), and differentially expressed in female adult (70 days) and laying Zhedong White geese (270 days). Meanwhile, FOXL2 is highly expressed in the hypothalamic-pituitary-ovarian axis, especially in the ovary tissues of the adult and laying geese. Furthermore, one microsatellite (TGTC1415-1418----) and five single nucleotide polymorphisms (A1290G, G1495A, T1554C, T1692A, C1695G and T1697G) were identified in the 3'-untranslated regions. All the information derived from this study could be valuable and facilitate further researches on the function of FOXL2 gene in geese.


Subject(s)
Geese , Gene Expression Profiling , Amino Acid Sequence , Animals , Cloning, Molecular , DNA, Complementary/chemistry , Female , Geese/genetics , Geese/metabolism , Phylogeny
20.
Sci Rep ; 10(1): 14279, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32868783

ABSTRACT

Although geese possess an adaptive physiological capacity for lipid storage, few candidate genes contributing to this ability are characterised. By comparing the genomes of individuals with extremely high and low fatty liver weights (FLW), candidate genes were identified, including ARAP2, GABRE, and IL6. Single-nucleotide polymorphisms in or near these genes were significantly (p < 0.05) associated with carcass traits (FLW) and biochemical indexes (very-low-density lipoprotein and N-terminal procollagen III), suggesting contribution to trait variation. A common variant at the 5'-end of LCORL explained ~ 18% and ~ 26% of the phenotypic variance in body weight with/without overfeeding and had significant effects on FLW (p < 0.01). ZFF36L1, ARHGEF1 and IQCJ, involved in bile acid metabolism, blood pressure, and lipid concentration modulation, were also identified. The presence of highly divergent haplotypes within these genes suggested involvement in protection against negative effects from excessive lipids in the liver or circulatory system. Based on this and transcriptomic data, we concluded that geese hepatosteatosis results from severe imbalance between lipid accumulation and secretion, comparable to human non-alcohol fatty liver disease but involving other genes. Our results provided valuable insights into the genesis of geese fatty liver and detected potential target genes for treatment of lipid-related diseases.


Subject(s)
Fatty Liver/veterinary , Geese/genetics , Poultry Diseases/genetics , Animals , Fatty Liver/etiology , Fatty Liver/genetics , Fatty Liver/pathology , Genes/genetics , Genes/physiology , Genetic Association Studies/veterinary , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Lipid Metabolism/genetics , Liver/pathology , Organ Size , Polymorphism, Single Nucleotide/genetics , Poultry Diseases/etiology , Triglycerides/blood , Whole Genome Sequencing/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...