Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Int Urol Nephrol ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564076

ABSTRACT

BACKGROUND: This research aimed to explore the association between changes in the intake of common individual vitamins and combinations of vitamins and the prevalence of kidney calculi. METHODS: We used data from NHANES to investigate the association between nine common vitamins and kidney stone prevalence. Participants were clustered into several vitamin exposure patterns using an unsupervised K-means clustering method. We used logistic regression models and restrictive cubic spline curves to explore the influence of vitamins. RESULTS: The regression model exposed that compared to lower intake, high intake of vitamin B6 [Q4: OR (95% CI) = 0.76 (0.62, 0.93)], vitamin C [Q4: OR (95% CI) = 0.73 (0.59, 0.90)] and vitamin D [Q4: OR (95% CI) = 0.77 (0.64, 0.94)] individually exerted protective effects against the prevalence of kidney stones. Furthermore, the restrictive cubic spline analysis showed that the protective effect against the prevalence of kidney stones is enhanced as the take of vitamin B6 and vitamin D increased. Moreover, with the increase in vitamin C intake, its protective effect may turn into a risk factor. Regarding mixed exposure, Cluster 4 exhibited a significant protective effect against kidney stones compared with Cluster 1 [Model 3: OR (95% CI) = 0.79 (0.64, 0.98)]. CONCLUSIONS: Our research revealed that high levels of vitamin B6 and vitamin D intake were linked to a lower prevalence of kidney stone. With the gradual increase intake of vitamin C, the prevalence of kidney calculi decreased first and then increased. In addition, the co-exposure of nine vitamins is a protective factor for kidney stone disease.

2.
J Magn Reson Imaging ; 59(1): 108-119, 2024 01.
Article in English | MEDLINE | ID: mdl-37078470

ABSTRACT

BACKGROUND: Vessels encapsulating tumor cluster (VETC) is a critical prognostic factor and therapeutic predictor of hepatocellular carcinoma (HCC). However, noninvasive evaluation of VETC remains challenging. PURPOSE: To develop and validate a deep learning radiomic (DLR) model of dynamic contrast-enhanced MRI (DCE-MRI) for the preoperative discrimination of VETC and prognosis of HCC. STUDY TYPE: Retrospective. POPULATION: A total of 221 patients with histologically confirmed HCC and stratified this cohort into training set (n = 154) and time-independent validation set (n = 67). FIELD STRENGTH/SEQUENCE: A 1.5 T and 3.0 T; DCE imaging with T1-weighted three-dimensional fast spoiled gradient echo. ASSESSMENT: Histological specimens were used to evaluate VETC status. VETC+ cases had a visible pattern (≥5% tumor area), while cases without any pattern were VETC-. The regions of intratumor and peritumor were segmented manually in the arterial, portal-venous and delayed phase (AP, PP, and DP, respectively) of DCE-MRI and reproducibility of segmentation was evaluated. Deep neural network and machine learning (ML) classifiers (logistic regression, decision tree, random forest, SVM, KNN, and Bayes) were used to develop nine DLR, 54 ML and clinical-radiological (CR) models based on AP, PP, and DP of DCE-MRI for evaluating VETC status and association with recurrence. STATISTICAL TESTS: The Fleiss kappa, intraclass correlation coefficient, receiver operating characteristic curve, area under the curve (AUC), Delong test and Kaplan-Meier survival analysis. P value <0.05 was considered as statistical significance. RESULTS: Pathological VETC+ were confirmed in 68 patients (training set: 46, validation set: 22). In the validation set, DLR model based on peritumor PP (peri-PP) phase had the best performance (AUC: 0.844) in comparison to CR (AUC: 0.591) and ML (AUC: 0.672) models. Significant differences in recurrence rates between peri-PP DLR model-predicted VETC+ and VETC- status were found. DATA CONCLUSIONS: The DLR model provides a noninvasive method to discriminate VETC status and prognosis of HCC patients preoperatively. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 2.


Subject(s)
Carcinoma, Hepatocellular , Deep Learning , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Bayes Theorem , Reproducibility of Results , Retrospective Studies , Liver Neoplasms/diagnostic imaging , Prognosis , Magnetic Resonance Imaging
3.
Front Pharmacol ; 13: 1036593, 2022.
Article in English | MEDLINE | ID: mdl-36339579

ABSTRACT

Background: Tong-fu therapeutic method (TFTM) is a traditional Chinese medicine treatment method for ulcerative colitis, which is a novel treatment strategies and have purgative effect. As the most representative medicinal of TFTM, Rhubarb has been reported to have a therapeutic impact on ulcerative colitis by regulating intestinal flora, anti-inflammation, and improving intestinal microcirculation. Although rhubarb has been widely used in Chinese medicine for the treatment of ulcerative colitis, the appropriate protocol is still demanded to its rational use in clinic, which promoted to evaluate the efficacy and safety for rhubarb-based therapy on ulcerative colitis. Method: Clinical trials were searched through PubMed, Cochrane Library, Web of Science, Excerpta Medica Database, Chinese National Knowledge Infrastructure, WAN FANG Database, Chinese Scientific Journal Database, and Chinese Biomedical Literature Database. The subgroup analyses were performed with three groups: medication, course of treatment, and route of administration. The statistical analyses were performed on Review Manager software (version 5.4.1). Results: A total of 2, 475 patients in 30 original studies were analyzed in this article. It was found that rhubarb-based therapy could increase clinical efficacy and reduce the recurrence rate. Subgroup analyses showed that rhubarb-based therapy was more effective than 5-aminosalicylic acid or sulfasalazine alone. In addition, the hypercoagulable state of ulcerative colitis could be ameliorated by decreasing platelet (PLT) and fibrinogen (FIB), and increasing prothrombin time (PT) significantly. Moreover, C-reaction protein (CRP), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8, and IL-1ß expression were significantly reduced, while IL-10 production was increased, which mediated the alleviation of intestinal inflammation stress. Conclusion: Rhubarb-based therapy could effectively improve ulcerative colitis. Of note, the rhubarb-based medicinal formulas combined with 5-ASA or SASP are more effective than the 5-ASA or SASP alone. In addition, although rhubarb has side effect, the results of our analysis showed that rhubarb-based therapy did not exhibit significant side effects. This means it has a high safety profile in clinical use. Moreover, the use of rhubarb-based therapy is recommend to use within 1-13 weeks or 3 months via administered orally or by enema, which is contributes to ensure the curative effect and avoid its toxic and side effects. As an important case of TFTM, rhubarb-based therapy provides evidence for the practical application of TFTM.

4.
Lab Invest ; 102(12): 1323-1334, 2022 12.
Article in English | MEDLINE | ID: mdl-35945269

ABSTRACT

Previous studies have demonstrated that circST6GALNAC6 is a tumor suppressor in bladder cancer. However, the role of circST6GALNAC6 in ferroptosis remains unclear. In the current study, ferroptosis was induced in bladder cancer cells by erastin. Functional experiments showed that overexpression of circST6GALNAC6 promoted ferroptosis of bladder cancer cells in vitro and in vivo. Mechanistic studies revealed that circST6GALNAC6 bound to the N-terminus of small heat shock protein 1 (HSPB1) and thus blocked the erastin-induced phosphorylation of HSPB1 at the Ser-15 site, a phosphorylation site in the protective response to ferroptosis stress. In addition, protein kinase C inhibited circST6GALNAC6-induced ferroptosis by increasing the overall phosphorylation level of HSPB1, further demonstrating the role of phosphorylation activation of HSPB1 in resistance to ferroptosis. Finally, the involvement of the HSPB1/p38 MAPK pathway in the downstream signal transduction of circST6GALNAC6 in bladder cancer ferroptosis regulation was determined. The regulatory mechanism of ferroptosis sensitivity dependent on circST6GALNAC6 expression levels in bladder cancer was revealed as circRNA regulation of various protein functions. CircST6GALNAC6 inhibits HSPB1 and promotes cell ferroptosis by occupying the phosphorylation site (Ser-15) of HSBP1 and activating the P38 MAPK signaling pathway. Therefore, enhancing the expression of circST6GALNAC6 to promote ferroptosis or using circST6GALNAC6 as a biomarker of ferroptosis sensitivity is of considerable importance to the development and application of ferroptosis intervention methods in bladder cancer.


Subject(s)
Ferroptosis , Urinary Bladder Neoplasms , Humans , RNA, Circular , Urinary Bladder Neoplasms/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Molecular Chaperones
5.
Chem Sci ; 13(26): 7755-7764, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35865907

ABSTRACT

The accessibility to long, branched and complex glycans containing many 1,2-cis glycosidic linkages with precise structures remains a challenging task in chemical synthesis. Reported here is an efficient, stereoselective and orthogonal one-pot synthesis of a tetradecasaccharide and shorter sequences from Lentinus giganteus polysaccharides with antitumor activities. The synthetic strategy consists of: (1) newly developed merging reagent modulation and remote anchimeric assistance (RMRAA) α-(1→6)-galactosylation in a highly stereoselective manner, (2) DMF-modulated stereoselective α-(1→3)-glucosylation, (3) RMRAA stereoselective α-(1→6)-glucosylation, (4) several orthogonal one-pot glycosylations on the basis of N-phenyltrifluoroacetimidate (PTFAI) glycosylation, Yu glycosylation and ortho-(1-phenylvinyl)benzoate (PVB) glycosylation to streamline oligosaccharide synthesis, and (5) convergent [7 + 7] glycosylation for the final assembly of the target tetradecasaccharide. In particular, this new RMRAA α-galactosylation method has mild reaction conditions, broad substrate scopes and significantly shortened step counts for the heptasaccharide synthesis in comparison with 4,6-di-tert-butylsilyene (DTBS) directed α-galactosylation. Furthermore, DFT calculations shed light on the origins of remote anchimeric assistance effects (3,4-OBz > 3,4-OAc > 4-OBz > 3-OBz) of acyl groups.

6.
Biomaterials ; 286: 121576, 2022 07.
Article in English | MEDLINE | ID: mdl-35598336

ABSTRACT

Mitochondrial uncouplers are capable of maximizing cell respiration to induce local hypoxia, which provides a promising target for bioreductive therapy. In this work, we develop a metal-coordinated mitochondria protonophore uncoupler (designated as Cu-BAQ) for O2-exhausting enhanced bioreductive therapy. In brief, carrier free Cu-BAQ is self-assembled by copper ion (Cu2+), mitochondria protonophore uncoupler (BAM15) and bioreductive drug (AQ4N), which possesses a favorable stability and an improved bioavailability. After intravenous administration, nanosized Cu-BAQ prefers to accumulate at tumor site for effective cellular uptake. Moreover, the Cu2+-coordinated nanomedicine of Cu-BAQ exhibits a glutathione (GSH) responsive drug release behavior and the released BAM15 could promote the mitochondria uncoupling to maximize the cell respiration. As a result, the excessive O2 consumption would induce local hypoxia to activate AQ4N for enhanced bioreductive therapy. In vivo investigations demonstrate that Cu-BAQ is able to regulate tumor hypoxia microenvironment and significantly inhibit tumor growth with a minimized side effect. This GSH-responsive self-delivery nanoplatform provides a new insight for the development of individualized biomedicine for hypoxic tumor precision therapy.


Subject(s)
Mitochondria , Nanomedicine , Cell Line, Tumor , Humans , Hypoxia , Tumor Microenvironment
7.
Front Med (Lausanne) ; 9: 831952, 2022.
Article in English | MEDLINE | ID: mdl-35308527

ABSTRACT

Purpose: To share our experience in the diagnosis and treatment of an inflammatory myofibroblastic tumor of the urinary bladder (IMTUB). Materials and Methods: A database searches in the pathology archives by using the term "inflammatory myofibroblastic tumor" and" bladder" in our hospital department of pathology from 2010 to 2021. Patient characteristics, clinical features, histopathological results, immunohistochemical staining results, and treatment outcomes were reviewed. Results: Fourteen cases of IMTUB were retrieved. The mean age was 44.7 ± 18.9 years (range 12-74). Nine (64.3%) of the patients presented with hematuria, followed by seven (50%) with odynuria, five (35.7%) with urgent urination, and one (7.1%) with dysuria. Ten (71.4%) of the patients were treated with partial cystectomy (PC), three (21.4%) with transurethral resection of bladder tumor (TURBT), and one (7.1%) with radical cystectomy (RC). Histopathologically, eight (57.1%) had a compact spindle cell pattern. Anaplastic lymphoma kinase (ALK) staining was positive in six (75%) of 8 cases. During a mean follow-up period of 43.9 ± 38 months (range 3-117), a patient had recurrence within half a month. Then, the patient was treated with further TURBT surgery and had no recurrence within 6 months. Thirteen of the patients had no local recurrence or distant metastasis. Conclusion: Inflammatory myofibroblastic tumor of the urinary bladder (IMTUB) is clinically rare and has a good prognosis. The disease is mainly treated with surgery to remove the tumor completely. It can easily be misdiagnosed as bladder urothelial carcinoma, leiomyosarcoma, or rhabdomyosarcoma, which may result in overtreatment and poor quality of life of patients.

8.
Front Pharmacol ; 13: 844961, 2022.
Article in English | MEDLINE | ID: mdl-35321324

ABSTRACT

Background: The combination of probiotics and traditional Chinese medicine (TCM) is a prospective therapy for ulcerative colitis (UC), and its efficacy and safety need to be urgently evaluated. Objective: This study aims to comprehensively assess the efficacy and safety of probiotics combined with TCM for the treatment of UC. Methods: The Pubmed, EMBASE, Cochrane library, China Academic Journals (CNKI), Wan-fang database, Chinese biomedical literature service system (CBM), and Chinese Science and Technology Journals (CQVIP) were searched. Subgroup analysis were designed in accordance with different control drugs, treatment courses, and types of probiotics. The Review Manager software (version 5.4.1) was utilized for statistical analysis. Results: 14 original studies containing 1,154 patients were analyzed and showed that probiotics with TCM was more effective than 5-aminosalicylic acid (5-ASA), probiotics or TCM used individually. Moreover, probiotics combined with TCM could inhibit the intestinal inflammation, reduce the recurrence rate and the incidence of adverse events. The subgroup analysis showed that a mixture of different probiotics was more effective than a single strain. Conclusion: It is suggested that probiotics combined with TCM could effectively control clinical symptoms, inhibit intestinal inflammatory response, and finally slow down the disease progress and reduce the disease recurrence with less adverse events. The mixture of different probiotics used in conjunction with individually tailored TCM is a potential clinical strategy for UC.

9.
Int J Nanomedicine ; 17: 151-162, 2022.
Article in English | MEDLINE | ID: mdl-35046651

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) is a fatal lung disease and affects over 5 million patients worldwide. Precise and early detection of PF is of pivotal importance to slow the disease progression. However, there are currently no effective tools to detect PF directly. PURPOSE: This study aimed to develop an imaging modality to detect PF directly. Excessive collagen deposition is the hallmark of PF. Herein, we developed a novel PF diagnostic agent, namely PVD (platelets-derived nanovesicles labeled with dye), by utilizing near-infrared (NIR)-responsive biomimetic platelets that specifically recognize collagen. METHODS: In brief, platelets membrane was extracted from purified platelets by freeze/thaw and formed to PVD nanovesicles via sonication and extrusion, when loaded with DiR dye. Red blood cells membrane loaded with DiR was prepared in the same way as PVD to form RVD as control. Collagen self-assembled on microplates was used as an in vitro collagen fibrils model and monocrotaline-induced rats were used as an in vivo PF model. RESULTS: We demonstrated that PVD, but not RVD nor other controls, could bind collagen both in vitro and in vivo, and directly detect pulmonary fibrosis in vivo and ex vivo at the early PF stage. CONCLUSION: Collectively, PVD is a versatile NIR-responsive probe for the direct visualization of collagen, and can be particularly helpful in direct detecting PF. To the best of our knowledge, PVD is the first report of a NIR probe for the direct detection of pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , Animals , Biomimetics , Blood Platelets , Collagen , Extracellular Matrix , Humans , Pulmonary Fibrosis/diagnostic imaging , Rats
10.
Pharmacol Res ; 175: 106004, 2022 01.
Article in English | MEDLINE | ID: mdl-34826603

ABSTRACT

Emerging evidence has shown that nonalcoholic fatty liver disease (NAFLD) may be both a consequence and a cause of hypertension. Recent studies have demonstrated that phosphodiesterase 4 (PDE4)-cAMP signaling represents a pathway relevant to the pathophysiology of metabolic disorders. This study aims to investigate the impact and the underlying mechanism of PDE4 in the pathogenesis of NAFLD and its associated hypertension. Here we demonstrated that high-fat-diet (HFD) fed mice developed NAFLD and hypertension, with an associated increase in hepatic PDE4D expression, which can be prevented and even reversed by PDE4 inhibitor roflumilast. Furthermore, we demonstrated that hepatic overexpression of PDE4D drove significant hepatic steatosis and elevation of blood pressure. Mechanistically, PDE4D activated fatty acid translocase CD36 signaling which facilitates hepatic lipid deposition, resulting in TGF-ß1 production by hepatocytes and excessive TGF-ß1 signaling in vessels and consequent hypertension. Specific silencing of TGF-ß1 in hepatocytes by siRNA using poly (ß-amino ester) nanoparticles significantly normalized hepatic PDE4D overexpression-activated TGF-ß1 signaling in vessels and hypertension. Together, the conclusions indicated that PDE4D plays an important role in the pathogenesis of NAFLD and associated hypertension via activation of CD36-TGF-ß1 signaling in the liver. PDE4 inhibitor such as roflumilast, which is clinically approved for chronic obstructive pulmonary disease (COPD) treatment, has the potential to be used as a preventive or therapeutic drug against NAFLD and associated hypertension in the future.


Subject(s)
Aminopyridines/therapeutic use , Benzamides/therapeutic use , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Hypertension/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Phosphodiesterase 4 Inhibitors/therapeutic use , Aminopyridines/pharmacology , Animals , Aorta/cytology , Becaplermin/pharmacology , Benzamides/pharmacology , CD36 Antigens/genetics , CD36 Antigens/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cyclopropanes/pharmacology , Cyclopropanes/therapeutic use , Hepatocytes/drug effects , Hepatocytes/metabolism , Hypertension/genetics , Hypertension/metabolism , Insulin/pharmacology , Liver/drug effects , Liver/metabolism , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Myocytes, Smooth Muscle/physiology , Nanoparticles/administration & dosage , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Polymers/administration & dosage , RNA, Small Interfering/administration & dosage , Sirtuin 1/metabolism , Transforming Growth Factor beta1/metabolism
11.
Org Lett ; 23(21): 8257-8261, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34676757

ABSTRACT

One-pot synthesis of both glycans and nucleosides remains rare and challenging. Herein, we report a one-pot glycosylation strategy for glycans and nucleosides synthesis based on ortho-(1-phenylvinyl)benzyl glycosides, which has several advantages, including no aglycon transfers, no undesired interference of departing species, no unpleasant odor, and up to the construction of four different glycosidic linkages.

12.
Int J Biol Sci ; 17(10): 2417-2429, 2021.
Article in English | MEDLINE | ID: mdl-34326684

ABSTRACT

Background: Bladder cancer is the fourth and tenth most common malignancy in men and women worldwide, respectively. One of the main reasons for the unsatisfactory therapeutic control of bladder cancer is that the molecular biological mechanism of bladder cancer is complex. Gasdermin B (GSDMB) is one member of the gasdermin family and participates in the regulation of cell pyroptosis. The role of GSDMB in bladder cancer has not been studied to date. Methods: TCGA database was used to exam the clinical relevance of GSDMB. Functional assays such as MTT assay, Celigo fluorescent cell-counting assay, Annexin V-APC assay and xenografts were used to evaluate the biological role of GSDMB in bladder cancer. Mass spectrometry and immunoprecipitation were used to detect the protein interaction between GSDMB and STAT3, or GSDMB and USP24. Western blot and immunohistochemistry were used to study the relationship between USP24, GSDMB and STAT3. Results: In this study, bioinformatics analysis indicated that the mRNA expression level of GSDMB in bladder cancer tissues was higher than that in adjacent normal tissues. Then, we showed that GSDMB promoted bladder cancer progression. Furthermore, we demonstrated that GSDMB interacted with STAT3 to increase the phosphorylation of STAT3 and modulate the glucose metabolism and promote tumor growth in bladder cancer cells. Besides, we also showed that USP24 stabilized GSDMB to activate STAT3 signaling, which was blocked by the USP24 inhibitor. Conclusions: We suggested that aberrantly up-regulated GSDMB was responsible for enhancing the growth and invasion ability of bladder cancer cells. Then, we showed that GSDMB could bind to STAT3 and activate STAT3 signaling in bladder cancer. Furthermore, we also demonstrated that USP24 interacted with GSDMB and prevented GSDMB from degradation in bladder cancer cells. Therefore, the USP24/GSDMB/STAT3 axis may be a new targetable signaling pathway for bladder cancer treatment.


Subject(s)
Cell Proliferation/genetics , Pore Forming Cytotoxic Proteins/metabolism , STAT3 Transcription Factor/metabolism , Ubiquitin Thiolesterase/metabolism , Urinary Bladder Neoplasms/pathology , Animals , Cell Line, Tumor , Humans , Immunohistochemistry , Mice, Inbred BALB C , Mice, Nude , Phosphorylation , Pore Forming Cytotoxic Proteins/genetics , RNA, Messenger/genetics , Signal Transduction , Ubiquitin Thiolesterase/genetics , Up-Regulation , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Xenograft Model Antitumor Assays
13.
Chem Sci ; 12(14): 5143-5151, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-34163751

ABSTRACT

Both glycans (O-glycosides) and nucleosides (N-glycosides) play important roles in numerous biological processes. Chemical synthesis is a reliable and effective means to solve the attainability issues of these essential biomolecules. However, due to the stereo- and regiochemical issues during glycan assembly, together with problems including the poor solubility and nucleophilicity of nucleobases in nucleoside synthesis, the development of one-pot glycosylation strategies toward efficient synthesis of both glycans and nucleosides remains poor and challenging. Here, we report the first orthogonal and reactivity-based one-pot glycosylation strategy suitable for both glycan and nucleoside synthesis on the basis of glycosyl ortho-(1-phenylvinyl)benzoates. This one-pot glycosylation strategy not only inherits the advantages including no aglycon transfers, no undesired interference of departing species, and no unpleasant odors associated with the previously developed orthogonal one-pot glycosylation strategy based on glycosyl ortho-alkynylbenzoates, but also highly expands the scope (glycans and nucleosides) and increases the number of leaving groups that could be employed for the multistep one-pot synthesis (up to the formation of four different glycosidic bonds). In particular, the current one-pot glycosylation strategy is successfully applied to the total synthesis of a promising tuberculosis drug lead capuramycin and the divergent and formal synthesis of TMG-chitotriomycin with potent and specific inhibition activities toward ß-N-acetylglucosaminidases and important endosymbiotic lipochitooligosaccharides including the Nod factor and the Myc factor, which represents one of the most efficient and straightforward synthetic routes toward these biologically salient molecules.

14.
Front Microbiol ; 12: 652719, 2021.
Article in English | MEDLINE | ID: mdl-33967989

ABSTRACT

Controlled regulation of genomic DNA synthesis is a universally conserved process for all herpesviruses, including human cytomegalovirus (HCMV), and plays a key role in viral pathogenesis, such as persistent infections. HCMV DNA polymerase processivity factor UL44 plays an essential role in viral DNA replication. To better understand the biology of UL44, we performed a yeast two-hybrid screen for host proteins that could interact with UL44. The most frequently isolated result was the SUMO-conjugating enzyme UBC9, a protein involved in the sumoylation pathway. The UBC9-UL44 interaction was confirmed by in vitro His-tag pull-down and in vivo co-immunoprecipitation assays. Using deletion mutants of UL44, we mapped two small regions of UL44, aa 11-16, and 260-269, which might be critical for the interaction with UBC9. We then demonstrated that UL44 was a target for sumoylation by in vitro and in vivo sumoylation assays, as well as in HCMV-infected cells. We further confirmed that 410lysine located within a ψKxE consensus motif on UL44 carboxy-terminal was the major sumoylation site of UL44. Interestingly, although 410lysine had no effects on subcellular localization or protein stability of UL44, the removal of 410lysine sumoylation site enhanced both viral DNA synthesis in transfection-replication assays and viral progeny production in infected cells for HCMV, suggesting sumoylation can attenuate HCMV replication through targeting UL44. Our results suggest that sumoylation plays a key role in regulating UL44 functions and viral replication, and reveal the crucial role of the carboxy-terminal of UL44, for which little function has been known before.

15.
Front Neurosci ; 15: 657465, 2021.
Article in English | MEDLINE | ID: mdl-33994932

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons. The causative pathogenic mechanisms in ALS remain unclear, limiting the development of treatment strategies. Neuroinflammation and immune dysregulation were involved in the disease onset and progression of several neurodegenerative disorders, including ALS. In this study, we carried out a bioinformatic analysis using publicly available datasets from Gene Expression Omnibus (GEO) to investigate the role of immune cells and genes alterations in ALS. Single-sample gene set enrichment analysis revealed that the infiltration of multiple types of immune cells, including macrophages, type-1/17 T helper cells, and activated CD4 + /CD8 + T cells, was higher in ALS patients than in controls. Weighted gene correlation network analysis identified immune genes associated with ALS. The Gene Ontology analysis revealed that receptor and cytokine activities were the most highly enriched terms. Pathway analysis showed that these genes were enriched not only in immune-related pathways, such as cytokine-cytokine receptor interaction, but also in PI3K-AKT and MAPK signaling pathways. Nineteen immune-related genes (C3AR1, CCR1, CCR5, CD86, CYBB, FCGR2B, FCGR3A, HCK, ITGB2, PTPRC, TLR1, TLR2, TLR7, TLR8, TYROBP, VCAM1, CD14, CTSS, and FCER1G) were identified as hub genes based on least absolute shrinkage and selection operator analysis. This gene signature could differentiate ALS patients from non-neurological controls (p < 0.001) and predict disease occurrence (AUC = 0.829 in training set; AUC = 0.862 in test set). In conclusion, our study provides potential biomarkers of ALS for disease diagnosis and therapeutic monitoring.

16.
Angew Chem Int Ed Engl ; 60(22): 12597-12606, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33763930

ABSTRACT

The efficient synthesis of long, branched, and complex carbohydrates containing multiple 1,2-cis glycosidic linkages is a long-standing challenge. Here, we report a merging reagent modulation and 6-O-levulinoyl remote anchimeric assistance glycosylation strategy, which is successfully applied to the first highly stereoselective synthesis of the branched Dendrobium Huoshanense glycans and the linear Longan glycans containing up to 30 contiguous 1,2-cis glucosidic bonds. DFT calculations shed light on the origin of the much higher stereoselectivities of 1,2-cis glucosylation with 6-O-levulinoyl group than 6-O-acetyl or 6-O-benzoyl groups. Orthogonal one-pot glycosylation strategy based on glycosyl ortho-alkynylbenzoates and ortho-(1-phenylvinyl)benzoates has been demonstrated in the efficient synthesis of complex glycans, precluding such issues as aglycon transfer inherent to orthogonal one-pot synthesis based on thioglycosides.

17.
Cancer Med ; 10(8): 2703-2713, 2021 04.
Article in English | MEDLINE | ID: mdl-33749163

ABSTRACT

RNA binding proteins (RBPs) are increasingly appreciated as being essential for normal hematopoiesis and have a critical role in the progression of hematological malignancies. However, their functional consequences and clinical significance in diffuse large B-cell lymphoma (DLBCL) remain unknown. Here, we conducted a systematic analysis to identify RBP-related genes affecting DLBCL prognosis based on the Gene Expression Omnibus database. By univariate and multivariate Cox proportional hazards regression (CPHR) methods, six RBPs-related genes (CMSS1, MAEL, THOC5, PSIP1, SNIP1, and ZCCHC7) were identified closely related to the overall survival (OS) of DLBCL patients. The RBPs signature could efficiently distinguished low-risk from high-risk patients and could serve as an independent and reliable factor for predicting OS. Moreover, Gene Set Enrichment Analysis revealed 17 significantly enriched pathways between high- versus low-risk group, including the regulation of autophagy, chronic myeloid leukemia, NOTCH signaling pathway, and B cell receptor signaling pathway. Then we developed an RBP-based nomogram combining other clinical risk factors. The receiver operating characteristic curve analysis demonstrated high prognostic predictive efficiency of this model with the area under the curve values were 0.820 and 0.780, respectively, in the primary set and entire set. In summary, our RBP-based model could be a novel prognostic predictor and had the potential for developing treatment targets for DLBCL.


Subject(s)
Biomarkers, Tumor/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/mortality , RNA-Binding Proteins/genetics , Aged , Female , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Lymphoma, Large B-Cell, Diffuse/drug therapy , Male , Middle Aged , Nomograms , Precision Medicine , Prognosis , Proportional Hazards Models , Reproducibility of Results
18.
Cell Death Dis ; 12(2): 168, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33568625

ABSTRACT

Bladder cancer (BCa) is an aggressive malignancy because of its distant metastasis and high recurrence rate. Circular RNAs (circRNAs) exert critical regulatory functions in cancer progression. However, the expression patterns and roles of circRNAs in BCa have not been well investigated. In this study, we first screened circRNA expression profiles using a circRNA microarray of paired BCa and normal tissues, and the expression of circST6GALNAC6 was confirmed by qRT-PCR and fluorescence in situ hybridization (FISH). MTT, colony formation and Transwell assays were performed to measure cell proliferation, migration and invasion. We investigated the regulatory effect of circST6GALNAC6 on miRNA and its target genes to explore the potential regulatory mechanisms of circST6GALNAC6 by chromatin immunoprecipitation (ChIP), RNA immunoprecipitation (RIP), MS2-tagged RNA affinity purification (MS2-TRAP), immunofluorescence (IF) and dual luciferase activity assays. A nude mouse xenograft model was used to examine the functions of circST6GALNAC6/STMN1 in tumour metastasis in vivo. We found that 881 circRNAs were significantly dysregulated in BCa tissues compared to normal tissues. circST6GALNAC6(hsa_circ_0088708) was downregulated in BCa tissues and cells. Overexpression of circST6GALNAC6 effectively inhibited the cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro and suppressed BCa metastasis in vivo. Mechanistically, we showed that the SP1 transcription factor, which binds to the circST6GALNAC6 mRNA transcript, activates circST6GALNAC6 transcription. Next, we verified that circST6GALNAC6 serves as a sponge that directly binds miR-200a-3p to regulate stathmin (STMN1) expression. Furthermore, we found that STMN1 is involved in circST6GALNAC6/miR-200a-3p axis-regulated BCa EMT and metastasis. Thus, our findings indicate an important underlying mechanism in BCa metastasis by which SP1-induced circST6GALNAC6 sponges miR-200a-3p to promote STMN1/EMT signalling. This mechanism could provide pivotal potential prognostic biomarkers and therapeutic targets for BCa.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , MicroRNAs/metabolism , RNA, Circular/metabolism , Stathmin/metabolism , Urinary Bladder Neoplasms/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Mice, Nude , MicroRNAs/genetics , Neoplasm Invasiveness , RNA, Circular/genetics , Signal Transduction , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Stathmin/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
19.
Prostate Cancer Prostatic Dis ; 24(3): 775-785, 2021 09.
Article in English | MEDLINE | ID: mdl-33568749

ABSTRACT

BACKGROUND: Androgen deprivation therapy (ADT) remains the leading systemic therapy for locally advanced and metastatic prostate cancers (PCa). While a majority of PCa patients initially respond to ADT, the durability of response is variable and most patients will eventually develop incurable castration-resistant prostate cancer (CRPC). Our research objective is to identify potential early driver genes responsible for CRPC development. METHODS: We have developed a unique panel of hormone-naïve PCa (HNPC) patient-derived xenograft (PDX) models at the Living Tumor Laboratory. The PDXs provide a unique platform for driver gene discovery as they allow for the analysis of differentially expressed genes via transcriptomic profiling at various time points after mouse host castration. In the present study, we focused on genes with expression changes shortly after castration but before CRPC has fully developed. These are likely to be potential early drivers of CRPC development. Such genes were further validated for their clinical relevance using data from PCa patient databases. ZRSR2 was identified as a top gene candidate and selected for further functional studies. RESULTS: ZRSR2 is significantly upregulated in our PDX models during the early phases of CRPC development after mouse host castration and remains consistently high in fully developed CRPC PDX models. Moreover, high ZRSR2 expression is also observed in clinical CRPC samples. Importantly, elevated ZRSR2 in PCa samples is correlated with poor patient treatment outcomes. ZRSR2 knockdown reduced PCa cell proliferation and delayed cell cycle progression at least partially through inhibition of the Cyclin D1 (CCND1) pathway. CONCLUSION: Using our unique HNPC PDX models that develop into CRPC after host castration, we identified ZRSR2 as a potential early driver of CRPC development.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms, Castration-Resistant/pathology , Ribonucleoproteins/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Cycle , Cell Movement , Cell Proliferation , Humans , Male , Mice , Prognosis , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Ribonucleoproteins/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
20.
Cell Oncol (Dordr) ; 44(1): 219-233, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33001357

ABSTRACT

PURPOSE: Ca2+ homeostasis plays a pivotal role in regulating proliferation and apoptosis during cancer development. This study intended to examine the potential tumor-suppressing role of ZNF503 antisense RNA 1 (ZNF503-AS1) in bladder cancer, which may be implicated in the regulation of Ca2+ homeostasis. METHODS: Differentially expressed long non-coding RNAs (lncRNAs) related to bladder cancer were identified using microarray analysis, followed by the verification of transcription factors to which they bind. The relationship between ZNF503-AS1, GATA6 and SLC8A1 was assessed using dual luciferase reporter, RIP and ChIP assays. The expression levels of ZNF503-AS1, GATA6 and SLC8A1 were modulated to examine their effects on the tumorigenic potential, intracellular Ca2+ concentration and Ca2+-ATPase activity in bladder cancer cells. The in vivo tumorigenic ability was validated in nude mice. RESULTS: Microarray-based expression profile analysis of the GEO GSE61615 dataset revealed that the expression of ZNF503-AS1 was decreased in bladder cancer. Subsequently, we found that ZNF503-AS1 can bind to the transcription factor GATA6 to up-regulate the expression of SLC8A1. ZNF503-AS1 and SLC8A1 were found to be down-regulated in both primary bladder cancer tissues and cells. Exogenous overexpression of ZNF503-AS1 or SLC8A1 attenuated bladder cancer cell proliferation, invasion and migration, but promoted their apoptosis, accompanied by decreased Ca2+-ATPase activities and increased intracellular Ca2+ concentrations. Additional in vivo experiments validated the inhibitory effect of ZNF503-AS1 overexpression on the tumorigenic capacity of bladder cancer cells in nude mice. CONCLUSION: ZNF503-AS1 can recruit transcription factor GATA6 to up-regulate SLC8A1 expression, thereby increasing the intracellular Ca2+ concentration and repressing the proliferation, invasion and migration, and enhancing the apoptosis of bladder cancer cells.


Subject(s)
Calcium/metabolism , GATA6 Transcription Factor/metabolism , Genes, Tumor Suppressor , RNA, Long Noncoding/metabolism , Up-Regulation/genetics , Urinary Bladder Neoplasms/genetics , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Mice, Nude , Models, Biological , Neoplasm Invasiveness , RNA, Long Noncoding/genetics , Sodium-Calcium Exchanger/metabolism , Urinary Bladder Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...