Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Bull (Beijing) ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38945747

ABSTRACT

Water has been detected in lunar regolith, with multiple sources identified through the analysis of individual grains. However, the primary origin of water in the bulk lunar regolith remains uncertain. This study presents spectroscopic analyses of water content in sealed Chang'e-5 samples. These samples were sieved into various size fractions (bulk, <45 µm, and 45-355 µm) inside a glovebox filled with high-purity nitrogen. Results indicate a higher water content in the fine fractions (∼87 ± 11.9 ppm) than in bulk soil (∼37 ± 4.8 ppm) and coarse fractions (∼11 ± 1.5 ppm). This suggests that water is predominantly concentrated in the outermost rims of the regolith grains, and thus exhibits dependence on the surface volume ratio (also known as surface correlation), indicating solar wind is a primary source of lunar surface water. Laboratory, in-situ, and orbital results bridge sample analysis and remote sensing, offering a cohesive understanding of lunar surface water characteristics as represented by Chang'e-5. The discovery provides statistical evidence for the origin of water in lunar soil and can be considered representative of the lunar surface conditions. The water enrichment of the finest fraction suggests the feasibility of employing size sorting of lunar soils as a potential technological approach for water resource extraction in future lunar research stations.

2.
Sci Bull (Beijing) ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38777682

ABSTRACT

Lunar exploration is deemed crucial for uncovering the origins of the Earth-Moon system and is the first step for advancing humanity's exploration of deep space. Over the past decade, the Chinese Lunar Exploration Program (CLEP), also known as the Chang'e (CE) Project, has achieved remarkable milestones. It has successfully developed and demonstrated the engineering capability required to reach and return from the lunar surface. Notably, the CE Project has made historic firsts with the landing and on-site exploration of the far side of the Moon, along with the collection of the youngest volcanic samples from the Procellarum KREEP Terrane. These achievements have significantly enhanced our understanding of lunar evolution. Building on this success, China has proposed an ambitious crewed lunar exploration strategy, aiming to return to the Moon for scientific exploration and utilization. This plan encompasses two primary phases: the first crewed lunar landing and exploration, followed by a thousand-kilometer scale scientific expedition to construct a geological cross-section across the lunar surface. Recognizing the limitations of current lunar exploration efforts and China's engineering and technical capabilities, this paper explores the benefits of crewed lunar exploration while leveraging synergies with robotic exploration. The study refines fundamental lunar scientific questions that could lead to significant breakthroughs, considering the respective engineering and technological requirements. This research lays a crucial foundation for defining the objectives of future lunar exploration, emphasizing the importance of crewed missions and offering insights into potential advancements in lunar science.

3.
Sci Bull (Beijing) ; 68(7): 730-739, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36964088

ABSTRACT

With the rapid development of human lunar exploration projects, the lunar base establishment and resource utilization are on the way, and hence it is urgent and significant to reasonably predict engineering properties of the lunar regolith, which remains to be unclear due to limited lunar samples currently accessible for geotechnical tests. In this contribution, we aim to address this outstanding challenge from the perspective of granular material mechanics. To this end, the 3D multi-aspect geometrical characteristics and mechanical properties of Chang'e-5 lunar samples are for the first time evaluated with a series of non-destructive microscopic tests. Based on the measured particle surface roughness and Young's modulus, the interparticle friction coefficients of lunar regolith particles are well predicted through an experimental fitting approach using previously published data on terrestrial geomaterials or engineering materials. Then the residual friction angle of the lunar regolith under low confining pressure is predicted as 53° to 56° according to the particle overall regularity and interparticle friction coefficients of Chang'e-5 lunar samples. The presented results provide a novel cross-scale method to predict engineering properties of the lunar regolith from particle scale information to serve for the future lunar surface engineering construction.

4.
Sci Adv ; 9(8): eadd1467, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36827375

ABSTRACT

Antarctic bottom water (AABW) production is a key factor governing global ocean circulation, and the present disintegration of the Antarctic Ice Sheet slows it. However, its long-term variability has not been well documented. On the basis of high-resolution chemical scanning of a well-dated marine ferromanganese nodule from the eastern Pacific, we derive a record of abyssal ventilation spanning the past 4.7 million years and evaluate its linkage to AABW formation over this period. We find that abyssal ventilation was relatively weak in the early Pliocene and persistently intensified from 3.4 million years ago onward. Seven episodes of markedly reduced ocean ventilation indicative of AABW formation collapse are identified since the late Pliocene, which were accompanied by key stages of Northern Hemisphere glaciation. We suggest that the interpolar climate synchronization within these inferred seven collapse events may have intensified global glaciation by inducing poleward moisture transport in the Northern Hemisphere.

5.
Science ; 379(6632): 561-566, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36758076

ABSTRACT

The oldest Oldowan tool sites, from around 2.6 million years ago, have previously been confined to Ethiopia's Afar Triangle. We describe sites at Nyayanga, Kenya, dated to 3.032 to 2.581 million years ago and expand this distribution by over 1300 kilometers. Furthermore, we found two hippopotamid butchery sites associated with mosaic vegetation and a C4 grazer-dominated fauna. Tool flaking proficiency was comparable with that of younger Oldowan assemblages, but pounding activities were more common. Tool use-wear and bone damage indicate plant and animal tissue processing. Paranthropus sp. teeth, the first from southwestern Kenya, possessed carbon isotopic values indicative of a diet rich in C4 foods. We argue that the earliest Oldowan was more widespread than previously known, used to process diverse foods including megafauna, and associated with Paranthropus from its onset.


Subject(s)
Biological Evolution , Diet , Feeding Behavior , Hominidae , Animals , Bone and Bones , Fossils , Kenya , Plants , Paleontology
6.
Proc Natl Acad Sci U S A ; 119(51): e2214395119, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36508675

ABSTRACT

Remote sensing data revealed that the presence of water (OH/H2O) on the Moon is latitude-dependent and probably time-of-day variation, suggesting a solar wind (SW)-originated water with a high degassing loss rate on the lunar surface. However, it is unknown whether or not the SW-derived water in lunar soil grains can be preserved beneath the surface. We report ion microprobe analyses of hydrogen abundances, and deuterium/hydrogen ratios of the lunar soil grains returned by the Chang'e-5 mission from a higher latitude than previous missions. Most of the grain rims (topmost ~100 nm) show high abundances of hydrogen (1,116 to 2,516 ppm) with extremely low δD values (-908 to -992‰), implying nearly exclusively a SW origin. The hydrogen-content depth distribution in the grain rims is phase-dependent, either bell-shaped for glass or monotonic decrease for mineral grains. This reveals the dynamic equilibrium between implantation and outgassing of SW-hydrogen in soil grains on the lunar surface. Heating experiments on a subset of the grains further demonstrate that the SW-implanted hydrogen could be preserved after burial. By comparing with the Apollo data, both observations and simulations provide constraints on the governing role of temperature (latitude) on hydrogen implantation/migration in lunar soils. We predict an even higher abundance of hydrogen in the grain rims in the lunar polar regions (average ~9,500 ppm), which corresponds to an estimation of the bulk water content of ~560 ppm in the polar soils assuming the same grain size distribution as Apollo soils, consistent with the orbit remote sensing result.


Subject(s)
Soil , Water , Moon , Wind , Hydrogen
7.
Sci Adv ; 8(1): eabl9174, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34995111

ABSTRACT

We report analysis results of the reflectance spectra (0.48 to 3.2 µm) acquired by the Chang'E-5 lander, which provides vital context of the returned samples from the Northern Oceanus Procellarum of the Moon. We estimate up to 120 parts per million (ppm) of water (OH + H2O) in the lunar regolith, which is mostly attributed to solar wind implantation. A light-colored and surface-pitted rock (named as CE5-Rock) is evident near the lander. The reflectance spectra suggest that CE5-Rock could be transported from an older basalt unit. CE5-Rock exhibits a stronger absorption, near 2.85 µm, than the surrounding regolith, with estimation of ~180 ppm of water if the model for estimating water content of regolith is applicable to rock samples, which may suggest an additional source from the lunar interior. The low water content of the regolith may suggest the degassing of mantle reservoir beneath the Chang'E-5 landing site.

8.
Nature ; 600(7887): 49-53, 2021 12.
Article in English | MEDLINE | ID: mdl-34666337

ABSTRACT

The distribution of water in the Moon's interior carries implications for the origin of the Moon1, the crystallization of the lunar magma ocean2 and the duration of lunar volcanism2. The Chang'e-5 mission returned some of the youngest mare basalt samples reported so far, dated at 2.0 billion years ago (Ga)3, from the northwestern Procellarum KREEP Terrane, providing a probe into the spatiotemporal evolution of lunar water. Here we report the water abundances and hydrogen isotope compositions of apatite and ilmenite-hosted melt inclusions from the Chang'e-5 basalts. We derive a maximum water abundance of 283 ± 22 µg g-1 and a deuterium/hydrogen ratio of (1.06 ± 0.25) × 10-4 for the parent magma. Accounting for low-degree partial melting of the depleted mantle followed by extensive magma fractional crystallization4, we estimate a maximum mantle water abundance of 1-5 µg g-1, suggesting that the Moon's youngest volcanism was not driven by abundant water in its mantle source. Such a modest water content for the Chang'e-5 basalt mantle source region is at the low end of the range estimated from mare basalts that erupted from around 4.0 Ga to 2.8 Ga (refs. 5,6), suggesting that the mantle source of the Chang'e-5 basalts had become dehydrated by 2.0 Ga through previous melt extraction from the Procellarum KREEP Terrane mantle during prolonged volcanic activity.

9.
Natl Sci Rev ; 8(7): nwaa173, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34691680

ABSTRACT

The India-Asia collision is an outstanding smoking gun in the study of continental collision dynamics. How and when the continental collision occurred remains a long-standing controversy. Here we present two new paleomagnetic data sets from rocks deposited on the distal part of the Indian passive margin, which indicate that the Tethyan Himalaya terrane was situated at a paleolatitude of ∼19.4°S at ∼75 Ma and moved rapidly northward to reach a paleolatitude of ∼13.7°N at ∼61 Ma. This implies that the Tethyan Himalaya terrane rifted from India after ∼75 Ma, generating the North India Sea. We document a new two-stage continental collision, first at ∼61 Ma between the Lhasa and Tethyan Himalaya terranes, and subsequently at ∼53-48 Ma between the Tethyan Himalaya terrane and India, diachronously closing the North India Sea from west to east. Our scenario matches the history of India-Asia convergence rates and reconciles multiple lines of geologic evidence for the collision.

11.
Proc Natl Acad Sci U S A ; 117(25): 14299-14305, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32513701

ABSTRACT

The Lower Cretaceous Huajiying Formation of the Sichakou Basin in northern Hebei Province, northern China contains key vertebrate taxa of the early Jehol Biota, e.g., Protopteryx fengningensis, Archaeornithura meemannae, Peipiaosteus fengningensis, and Eoconfuciusornis zhengi This formation arguably documents the second-oldest bird-bearing horizon, producing the oldest fossil records of the two major Mesozoic avian groups Enantiornithes and Ornithuromorpha. Hence, precisely determining the depositional ages of the Huajiying Formation would advance our understanding of the evolutionary history of the Jehol Biota. Here we present secondary ion mass spectrometry (SIMS) U-Pb zircon analysis results of eight interbedded tuff/tuffaceous sandstone samples from the Huajiying Formation. Our findings, combined with previous radiometric dates, suggest that the oldest enantiornithine and ornithuromorph birds in the Jehol Biota are ∼129-131 Ma, and that the Jehol Biota most likely first appeared at ∼135 Ma. This expands the biota's temporal distribution from late Valanginian to middle Aptian with a time span of about 15 My.


Subject(s)
Biota , Birds/classification , Lead/chemistry , Silicates/chemistry , Zirconium/chemistry , Animals , Biological Evolution , China , Fossils , Geology , Phylogeny , Spectrometry, Mass, Secondary Ion
13.
Front Chem ; 7: 366, 2019.
Article in English | MEDLINE | ID: mdl-31179271

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide. Nowadays, pharmacological therapy for HCC is in urgent needs. Paclitaxel is an effective drug against diverse solid tumors, but commonly resisted in HCC patients. We recently have disclosed that microtubule affinity-regulating kinase 4 (MARK4) increases the microtubule dynamics and confers paclitaxel resistance in HCC, suggesting MARK4 as an attractive target to overcome paclitaxel resistance. Herein, we synthesized and identified coumarin derivatives 50 as a novel MARK4 inhibitor. Biological evaluation indicated compound 50 directly interacted with MARK4 and inhibited its activity in vitro, suppressed cell viability and induced apoptosis of HCC cells in a MARK4-dependent manner. Importantly, compound 50 significantly increased the drug response of paclitaxel treatment to HCC cells, providing a promise strategy to HCC treatment and broadening the application of paclitaxel in cancer therapy.

14.
Cancer Lett ; 458: 76-85, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31125641

ABSTRACT

Limited drug response and severe drug resistance confer the high mortality of non-small-cell lung cancer (NSCLC), a leading cause of cancer death worldwide. There is an urgent need for novel treatment against NSCLC. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is aberrantly overexpressed and participats in NSCLC development and EGFR-TKIs-induced drug resistance. Increasing evidences indicate that oncogenic ROR1 is a potential target for NSCLC therapy. However, nearly no ROR1 inhibitor was reported until now. Here, combining the computer-aided drug design and cell-based activity screening, we discover (R)-5,7-bis(methoxymethoxy)-2-(4-methoxyphenyl)chroman-4-one (ARI-1) as a novel ROR1 inhibitor. Biological evaluation demonstrates that ARI-1 specifically targets the extracellular frizzled domain of ROR1 and potently suppresses NSCLC cell proliferation and migration by regulating PI3K/AKT/mTOR signaling in a ROR1-dependent manner. Moreover, ARI-1 significantly inhibits tumor growth in vivo without obvious toxicity. Intriguingly, ARI-1 is effective to EGFR-TKIs-resistant NSCLC cells with high ROR1 expression. Therefore, our work suggests that the ROR1 inhibitor ARI-1 is a novel drug candidate for NSCLC treatment, especially for EGFR-TKIs-resisted NSCLC with high ROR1 expression.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Chromones/pharmacology , Lung Neoplasms/drug therapy , Receptor Tyrosine Kinase-like Orphan Receptors/antagonists & inhibitors , A549 Cells , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , HEK293 Cells , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Random Allocation , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Xenograft Model Antitumor Assays
15.
Bioorg Med Chem ; 27(11): 2235-2244, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31027708

ABSTRACT

Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) participates in diverse cancer-associated signaling pathways, playing an oncogenic role in multiple human cancers, including hepatocellular carcinoma (HCC). Our recent works clarify that Pin1 modulates miRNAs biogenesis by interacting with ERK-phosphorylated exportin-5 (XPO5) and changing XPO5 conformation, giving a potential target for HCC treatment. Herein, we discover 4,6-bis(benzyloxy)-3-phenylbenzofuran (TAB29) as a novel Pin1 inhibitor that targets Pin1 PPIase domain. TAB29 potently inhibits Pin1 activity with the IC50 value of 874 nM and displays an excellent selectivity toward Pin1 in vitro. Cell-based biological evaluation reveals that TAB29 significantly suppresses cell proliferation of HCC cells through restoring the nucleus-to-cytoplasm export of XPO5 and upregulating mature miRNAs expression. Collectively, this work provides a promising small molecule lead compound for Pin1 inhibition, highlighting the therapeutic potential of miRNA-based treatment for human cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Benzofurans/pharmacology , Carcinoma, Hepatocellular/drug therapy , Enzyme Inhibitors/pharmacology , Liver Neoplasms/drug therapy , NIMA-Interacting Peptidylprolyl Isomerase/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Benzofurans/chemical synthesis , Benzofurans/metabolism , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Karyopherins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Docking Simulation , NIMA-Interacting Peptidylprolyl Isomerase/chemistry , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Protein Binding , Up-Regulation/drug effects
16.
Sci Bull (Beijing) ; 64(18): 1325-1335, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-36659662

ABSTRACT

The nature and evolution of the lithospheric mantle underlying Northeast (NE) China were investigated by assessing the mineral chemistry, water contents, and noble gas (He-Ar) isotopes of peridotite xenoliths captured by Cenozoic basalts from the Changbaishan and Longgang regions. The xenoliths, which have 863-1141 °C equilibration temperatures, primarily comprise spinel lherzolites and rare spinel harzburgites. The Mg# (Fo) values of olivine in the peridotite xenoliths vary from 86.9 to 91.3. The clinopyroxenes have high Ti/Eu and low (La/Yb)N, and their chondrite-normalized rare earth elements (REEs) exhibit light REE-depletion to -enrichment patterns, indicating that the mantle underneath the investigated region was predominantly subjected to partial melting (1%-10%) and was metasomatized by silicate melts. The measured 3He/4He ratios of the Changbaishan xenoliths have a narrow range from 5.8 Ra to 8.4 Ra with an average of 7.4 Ra. The 3He/4He isotopic ratios of the Longgang xenoliths varied from 4.7 Ra to 8.1 Ra with an average of 5.9 Ra; slightly lower than the Changbaishan xenoliths. The whole-rock H2O contents of the studied peridotite ranged from 9 to 132 ppm. The high H2O contents in excess of 50 ppm (up to 132 ppm) might represent newly accreted and cooled asthenospheric materials, while those with H2O contents lower than 50 ppm (as little as 9 ppm) may represent thinned, relic, ancient lithospheric mantle. These geochemical evidences, in combination with published data, indicated that the lithospheric mantle beneath the Changbaishan and Longgang in NE China is dominated by the younger and more fertile lithospheric mantle with a minor ancient and refractory keel. In addition, the lithospheric mantle of this area was metasomatized by melts related to the recent subduction event (e.g., Pacific oceanic plate). Therefore, the westward-dipping Pacific oceanic plate subduction had an important contribution to the transformation of the lithospheric mantle beneath NE China.

17.
PLoS One ; 13(6): e0199507, 2018.
Article in English | MEDLINE | ID: mdl-29944691

ABSTRACT

The largest lake transgression event (LTE) associated with lake anoxic events (LAE) and periodic seawater incursion events (SWIE) in the Songliao Basin, northeastern China, occurred during deposition of the Cretaceous Nenjiang Formation. The Yaojia-Nenjiang Formation boundary (YNB) marks the beginning of the LTE, as well as LAE and SWIE. However, there is an absence of direct radioisotopic dating, and therefore the age of the YNB, as well as the beginning of LTE, together with their relationship with other geological events, is strongly debated. Here we present a new SIMS U-Pb zircon age from the lowermost Nenjiang Formation. The bentonite bed located 9.88 m above the YNB of the X1-4 borehole was analyzed. Twenty-five analyses of 25 zircons were conducted, which produced a weighted mean age of 85.5±0.6 Ma (MSWD = 0.87). Based on the average sediment accumulation rate, the age of the YNB is suggested to be 85.7 Ma, indicating that the LTE began in the Early Santonian. The new ages provide a precise chronostratigraphic framework for climatic and geological events. Our new results imply that the beginning of the LTE, LAE and SWIE occurred almost simultaneously with short-term sea level rise, and probably had a close relationship with OAE3.


Subject(s)
Lakes/chemistry , Lead/analysis , Spectrometry, Mass, Secondary Ion/methods , Uranium/analysis , China , Geography , Luminescence , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...