Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Int J Nanomedicine ; 19: 247-261, 2024.
Article in English | MEDLINE | ID: mdl-38229704

ABSTRACT

Introduction: Combination therapy provides better outcomes than a single therapy and becomes an efficient strategy for cancer treatment. In this study, we designed a hypoxia- and singlet oxygen-responsive polymeric micelles which contain azo and nitroimidazole groups for enhanced cellular uptake, repaid cargo release, and codelivery of photosensitizer Ce6 and hypoxia-activated prodrug tirapazamine TPZ (DHM-Ce6@TPZ), which could be used for combining Ce6-mediated photodynamic therapy (PDT) and PDT-activated chemotherapy to enhance the therapy effect of cancer. Methods: The hypoxia- and singlet oxygen-responsive polymeric micelles DHM-Ce6@TPZ were prepared by film hydration method. The morphology, physicochemical properties, stimuli responsiveness, in vitro singlet oxygen production, cellular uptake, and cell viability were evaluated. In addition, the in vivo therapeutic effects of the micelles were verified using a tumor xenograft mice model. Results: The resulting dual-responsive micelles not only increased the concentration of intracellular photosensitizer and TPZ, but also facilitated photosensitizer and TPZ release for enhanced integration of photodynamic and chemotherapy therapy. As a photosensitizer, Ce6 induced PDT by generating toxic singlet reactive oxygen species (ROS), resulting in a hypoxic tumor environment to activate the prodrug TPZ to achieve efficient chemotherapy, thereby evoking a synergistic photodynamic and chemotherapy therapeutic effect. The cascade synergistic therapeutic effect of DHM-Ce6@TPZ was effectively evaluated both in vitro and in vivo to inhibit tumor growth in a breast cancer mice model. Conclusion: The designed multifunctional micellar nano platform could be a convenient and powerful vehicle for the efficient co-delivery of photosensitizers and chemical drugs for enhanced synergistic photodynamic and chemotherapy therapeutic effect of cancer.


Subject(s)
Nanoparticles , Photochemotherapy , Prodrugs , Humans , Animals , Mice , Photosensitizing Agents/chemistry , Micelles , Singlet Oxygen , Photochemotherapy/methods , Cell Line, Tumor , Hypoxia/drug therapy , Polymers/chemistry , Prodrugs/pharmacology
2.
Appl Opt ; 62(23): 6253-6263, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37707094

ABSTRACT

Monte Carlo techniques have been widely applied in polarized light simulation. Based on different preconditions, there are two main types of sampling strategies for scattering direction: one is the scalar sampling method; the others are polarized sampling approaches, including the one- and two-point rejection methods. The polarized simulation of oceanic lidar involves a variety of mediums, and an efficient scattering sampling method is the basis for the coupling simulation of the atmosphere and ocean. To determine the optimal scattering sampling method for oceanic lidar simulation, we developed a polarized Monte Carlo model and simulated Mie scattering, Rayleigh scattering, and Petzold average-particle scattering experiments. This simulation model has been validated by comparison with Ramella-Roman's program [Opt. Express13, 4420 (2005)OPEXFF1094-408710.1364/OPEX.13.004420], with differences in reflectance and transmittance Stokes less than 1% in Mie scattering. The simulation results show these scattering sampling methods differ in runtime, scattering angle distributions, and reflectance and transmittance Stokes. Considering the current simulation accuracy of oceanic lidar, the differences in reflectance and transmittance Stokes are acceptable; thus, the runtime becomes the main evaluation factor. The one-point rejection method and scalar sampling method are preferable for the oceanic lidar polarized simulation. Under complex atmosphere-ocean coupling systems, scalar sampling methods may be a better choice since the calculation process of the sampling is independent of the incident Stokes vector.

3.
Adv Healthc Mater ; 12(29): e2301785, 2023 11.
Article in English | MEDLINE | ID: mdl-37590153

ABSTRACT

Nanoparticulate antitumor photodynamic therapy (PDT) is suffering from a very short lifetime, limited diffusion distance of reactive oxygen species (ROS). Herein, a hypoxia/ROS/pH triple-responsive metal-organic framework (MOF) is designed to facilitate the on-demand release of photosensitizers and hence enhanced PDT efficacy. Tailored azo-containing imidazole ligand is coordinated with zinc to form MOF where photosensitizer (Chlorin e6/Ce6) is encapsulated. Azo can be reduced by overexpressed azoreductase in hypoxic tumor cells, resulting in depletion of glutathione (GSH) and thioredoxin (Trx) which are major antioxidants against ROS oxidative damage in PDT, resulting in rapid cargo release and additional efficacy amplification. The imidazole ionization causes a proton sponge effect to ensure the disintegration of the nanocarriers in acidic organelles, allowing the rapid release of Ce6 through lysosome escape. Under light irradiation, ROS produced by Ce6 may oxidize imidazole to urea, resulting in rapid cargo release. All of the triggers are expected to show interactive synergism. The pH- and hypoxia-responsiveness can improve the release rate of Ce6 for enhanced PDT therapy, whereas the consumption of oxygen by PDT may induce elevated hypoxia and hence in turn enhanced cargo release. This work highlights the role of triple-responsive nanocarriers for triggered photosensitizer release and improved antitumor PDT efficacy.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Photochemotherapy , Porphyrins , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species , Hypoxia/drug therapy , Hydrogen-Ion Concentration , Imidazoles/pharmacology , Cell Line, Tumor
4.
Nature ; 614(7949): 694-700, 2023 02.
Article in English | MEDLINE | ID: mdl-36755091

ABSTRACT

The ideal electrolyte for the widely used LiNi0.8Mn0.1Co0.1O2 (NMC811)||graphite lithium-ion batteries is expected to have the capability of supporting higher voltages (≥4.5 volts), fast charging (≤15 minutes), charging/discharging over a wide temperature range (±60 degrees Celsius) without lithium plating, and non-flammability1-4. No existing electrolyte simultaneously meets all these requirements and electrolyte design is hindered by the absence of an effective guiding principle that addresses the relationships between battery performance, solvation structure and solid-electrolyte-interphase chemistry5. Here we report and validate an electrolyte design strategy based on a group of soft solvents that strikes a balance between weak Li+-solvent interactions, sufficient salt dissociation and desired electrochemistry to fulfil all the aforementioned requirements. Remarkably, the 4.5-volt NMC811||graphite coin cells with areal capacities of more than 2.5 milliampere hours per square centimetre retain 75 per cent (54 per cent) of their room-temperature capacity when these cells are charged and discharged at -50 degrees Celsius (-60 degrees Celsius) at a C rate of 0.1C, and the NMC811||graphite pouch cells with lean electrolyte (2.5 grams per ampere hour) achieve stable cycling with an average Coulombic efficiency of more than 99.9 per cent at -30 degrees Celsius. The comprehensive analysis further reveals an impedance matching between the NMC811 cathode and the graphite anode owing to the formation of similar lithium-fluoride-rich interphases, thus effectively avoiding lithium plating at low temperatures. This electrolyte design principle can be extended to other alkali-metal-ion batteries operating under extreme conditions.

5.
Opt Express ; 31(26): 43250-43268, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38178423

ABSTRACT

The polarized Monte Carlo (PMC) model has been applied to study the backscattering measurement of oceanic lidar. This study proposes a PMC model for shipborne oceanic lidar simulation. This model is validated by the Rayleigh scattering experiment, lidar equation, and in-situ lidar LOOP (Lidar for Ocean Optics Profiler) returns [Opt. Express30, 8927 (2022)10.1364/OE.449554]. The relative errors of the simulated Rayleigh scattering results are less than 0.07%. The maximum mean relative error (MRE) of the simulated single scattering scalar signals and lidar equation results is 30.94%. The maximum MRE of simulated total scattering signals and LOOP returns in parallel and cross channels are 33.29% and 22.37%, respectively, and the maximal MRE of the depolarization ratio is 24.13%. The underwater light field of the laser beam is also simulated to illustrate the process of beam energy spreading. These results prove the validity of the model. Further analyses show that the measured signals of shipborne lidar LOOP are primarily from the particle single scatterings. This model is significant for analyzing the signal contributions from multiple scattering and single scattering.

6.
Chem Asian J ; 17(14): e202200217, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35384330

ABSTRACT

Two series of ruthenium complexes with various polypyridyl ligands have been prepared. One series of complexes (5 examples) are featured with tetradentate polypyridyl ligands and two acetonitrile molecules at the axial positions of the coordination sphere; the other series (3 examples) include combinations of a tridentate polypyridyl ligand, one 2,2'-bipyridine (bpy) or two picolines, and one acetonitrile ligand. All these complexes were fully characterized by their NMR spectra as well as X-ray single crystal structures. Their electronic absorption and redox data were measured and reported. Of the 8 complexes, three candidates effectively catalyze electrochemical CO2 reduction reaction (CO2 RR) in wet acetonitrile medium, generating CO as the major product. All these three catalytically active complexes contain a 2,2':6',2'':6'',2'''-quaterpyridine (qpy) ligand scaffold. A maximum turnover frequency (TOFmax ) of>1000 s-1 was achieved for the electrocatalytic CO2 reduction at a modest overpotential. On the basis of electrochemical and spectroelectrochemical evidences, the CO2 substrate was proposed to bind with the ruthenium center at the two-electron reduced state of the complex and then entered the catalytic cycle.


Subject(s)
Ruthenium , Acetonitriles , Carbon Dioxide , Ligands , Pyridines/chemistry , Ruthenium/chemistry
7.
Eur J Med Chem ; 236: 114259, 2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35395439

ABSTRACT

Novel pyrrolopyridone BET degraders were designed and synthesized based on the binding mode between the pyrrolopyridone BET inhibitor with the BRD4 protein. The potent degraders on MV-4-11 cells were discovered through structure-activity relationship study. Modification of warhead on pyrrolopyridone BET degraders significantly regulates BRD4 isoform (long and short) protein degradation, which induces differential cell cycle arrest and apoptosis on MV-4-11 cells. Docking study revealed that the fine structural modification of BET degraders may bind with the BD domain of BRD4 protein to engage various surface areas that bind with CRBN.


Subject(s)
Antineoplastic Agents , Nuclear Proteins , Antineoplastic Agents/pharmacology , Cell Cycle Proteins , Nuclear Proteins/metabolism , Structure-Activity Relationship , Transcription Factors/metabolism
8.
ACS Nano ; 14(10): 12291-12312, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32940998

ABSTRACT

Electrochemistry intersected nanoscience 25 years ago when it became possible to control the flow of electrons through single molecules and nanostructures. Many surprises and a wealth of understanding were generated by these experiments. Professor Nongjian Tao was among the pioneering scientists who created the methods and technologies for advancing this new frontier. Achieving a deeper understanding of charge transport in molecules and low-dimensional materials was the first priority of his experiments, but he also succeeded in discovering applications in chemical sensing and biosensing for these novel nanoscopic systems. In parallel with this work, the investigation of a range of phenomena using novel optical microscopic methods was a passion of his and his students. This article is a review and an appreciation of some of his many contributions with a view to the future.


Subject(s)
Electrons , Nanostructures , Electrochemistry , Humans , Nanotechnology
9.
Environ Int ; 136: 105428, 2020 03.
Article in English | MEDLINE | ID: mdl-31918333

ABSTRACT

Triclosan (TCS) has been widely used as an antibacterial agent for the last several decades in personal care products. The toxicological effect of TCS has attracted more and more attention of researchers. The purpose of this study is to evaluate the cytotoxic effects of TCS in HepG2 cells and to elucidate the molecular mechanism focusing on regulation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/forkhead box O (FoxO) pathway in the glycolytic metabolism. In this study, we evaluated the adverse effect of TCS exposure on cell viability, reactive oxygen species (ROS) generation, superoxide dismutase (SOD) activity and mitochondrial membrane potential (MMP). In addition, the glycolysis process in HepG2 cells exposed to TCS was examined in terms of glucose consumption, lactate production and ATP generation. Furthermore, Affymetrix Human U133 plus 2.0 gene chips and gene function enrichment analysis were conducted to screen differential expression genes (DEGs) and potential signaling pathway. Expressions of the glycolysis-related proteins were measured and quantified with Western Blotting. The results showed that TCS could suppress the cell viability, induce oxidative stress, and cause mitochondrial damage. In addition, TCS exposure promoted the glycolysis process, as manifested by accelerated conversion of glucose to lactate and increased energy release. Western Blotting results confirmed that the expression levels of glycolysis related proteins were significantly elevated. The PI3K/Akt/FoxO pathway was identified to play a pivot role in TCS-induced glycolysis, which was further confirmed by inhibitor tests using specific inhibitors LY294002 and MK2206. In general, TCS can induce oxidative stress, cause oxidative damages and promote glycolysis in HepG2 cells, which was mediated by the PI3K/Akt/FoxO pathway.


Subject(s)
Forkhead Transcription Factors , Proto-Oncogene Proteins c-akt , Triclosan , Apoptosis , Forkhead Transcription Factors/physiology , Glycolysis , Hep G2 Cells , Humans , Phosphatidylinositol 3-Kinase/physiology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/physiology , Signal Transduction , Triclosan/toxicity
10.
Org Lett ; 21(20): 8164-8168, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31584281

ABSTRACT

The selective hydrogenation of the nitro moiety is a difficult task in the presence of other reducible functional groups such as alkenes or alkynes. We show that the carbon-based (metal-free) catalyst can be used to selectively reduce substituted nitro groups using H2 as a reducing agent, providing a great potential to replace noble-metal catalysts and contributing to simple and greener strategies for organic synthesis.

11.
Phys Chem Chem Phys ; 21(27): 15080-15088, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31241103

ABSTRACT

Tuning the electronic properties of oxide surfaces is of pivotal importance, because they find applicability in a variety of industrial processes, including catalysis. Currently, the industrial protocols for synthesizing oxide surfaces are limited to only partial control of the oxide's properties. This is because the ceramic processes result in complex morphologies and a priori unpredictable behavior of the products. While the bulk doping of alumina surfaces has been demonstrated to enhance their catalytic applications (i.e. hydrodesulphurization (HDS)), the fundamental understanding of this phenomenon and its effect at an atomic level remain unexplored. In our joint experimental and computational study, simulations based on Density Functional Theory (DFT), synthesis, and a variety of surface characterization techniques are exploited for the specific goal of understanding the structure-function relationship of phosphorus-doped γ-Al2O3 surfaces. Our theoretical calculations and experimental results agree in finding that P doping of γ-Al2O3 leads to a significant decrease in its work function. Our computational models show that this decrease is due to the formation of a new surface dipole, providing a clear picture of the effect of P doping at the surface of γ-Al2O3. In this study, we uncover a general paradigm for tuning support-catalyst interactions that involves electrostatic properties of doped γ-Al2O3 surface, specifically the surface dipole. Our findings open a new pathway for engineering the electronic properties of metal oxides' surfaces.

12.
Chem Commun (Camb) ; 55(37): 5379-5382, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30994654

ABSTRACT

Direct α-alkylation of carbonyl compounds represents a fundamental bond forming transformation in organic synthesis. We report the first ketone-alkylation using olefins and alcohols as simple alkylating agents catalyzed by graphene oxide. Extensive studies of the graphene surface suggest a pathway involving dual activation of both coupling partners. Notably, we show that polar functional groups have a stabilizing effect on the GO surface, which results in a net enhancement of the catalytic activity. The method represents the first alkylation of carbonyl compounds using graphenes, which opens the door for the development of an array of protocols for ketone functionalization employing common carbonyl building blocks and readily available graphenes.

13.
Toxicol Res (Camb) ; 8(2): 180-187, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30931099

ABSTRACT

Nano-sized ambient black carbon (BC) is hypothesized to pose a serious threat to human health. After emission into the air, the atmospheric oxidation process can modify its physiochemical properties and change its biological responses. In this study, we aimed to compare different DNA damage and repair responses promoted by fresh BC (FBC) and ozone oxidized-BC (OBC). The cell apoptosis, cell arrest, DNA damage and repair were investigated in A549 cells after treatment with FBC and OBC. Associated gene expressions were measured with the reverse transcription quantitative polymerase chain reaction (RT-qPCR) method. Both FBC and OBC could induce cell apoptosis in A549 cells with up-regulated gene of promyelocytic leukemia protein (pml) and down-regulated gene of anti-apoptotic B-cell lymphoma-2 (bcl-2). FBC caused cell cycle arrest at S and G2/M phases, which was associated with up-regulated ataxia telangiectasia mutated (atm), checkpoint kinase 2 (chk2), structural maintenance of chromosomes 1 (smc1) and cell division cycle 25 homolog A (cdc25a) genes. OBC promoted cell cycle arrest at the S phase with up-regulated genes of atm, chk2 and smc1. Both FBC and OBC induced oxidative DNA damage and time-dependent DNA repair responses with increased gene expressions of breast cancer susceptibility protein 1 (brca1), recombination protein A paralog B (rad51b), methyl methanesulfonate-sensitivity protein 22-like and tonsoku-like (mms22l). Compared to FBC, OBC could cause more sufficient DNA damage repair responses through cell cycle arrest at the S phase, resulting in relatively weaker DNA damages.

14.
Toxicol Res (Camb) ; 8(1): 38-45, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30713659

ABSTRACT

Triclosan (TCS) is used as an antimicrobial agent and has been widely dispersed and detected in the environment and organisms including human samples. Methyl-triclosan (MTCS) is the predominant bacterial TCS metabolite. At present, the toxicological effects and mechanism of TCS and MTCS are still not fully understood. In this study, the cytotoxic effects of TCS and MTCS in HepG2 cells were investigated in terms of cell proliferation, comet assay, cell cycle, and apoptosis. In addition, the expressions of related proteins were detected with western blotting analysis. The results showed that TCS could significantly inhibit cell proliferation, while MTCS had no obvious effect on cell growth. Both TCS and MTCS caused oxidative injury associated with HO-1 induction and increased DNA strand breaks, which consequently initiated the damage repair process via up-regulation of DNA-PKcs. In addition, TCS blocked the HepG2 cells in S and G2/M phases of cell cycle through down-regulation of cyclin A2 and CDK; while MTCS induced cell cycle arrest at the S phase through up-regulation of cyclin A2 and CDK. Furthermore, TCS activated p53 mediated apoptosis in HepG2 cells in a caspase-independent manner, while MTCS induced apoptosis was dependent on caspase. Moreover, TCS exposure exhibited more severe toxicity in HepG2 cells as compared with MTCS exposure, indicating that the replacement of the ionizable proton in TCS by the methyl group in MTCS is correlated with the cellular toxicity and the molecular mechanism.

15.
BMC Bioinformatics ; 20(1): 62, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30709336

ABSTRACT

BACKGROUND: Benefiting from big data, powerful computation and new algorithmic techniques, we have been witnessing the renaissance of deep learning, particularly the combination of natural language processing (NLP) and deep neural networks. The advent of electronic medical records (EMRs) has not only changed the format of medical records but also helped users to obtain information faster. However, there are many challenges regarding researching directly using Chinese EMRs, such as low quality, huge quantity, imbalance, semi-structure and non-structure, particularly the high density of the Chinese language compared with English. Therefore, effective word segmentation, word representation and model architecture are the core technologies in the literature on Chinese EMRs. RESULTS: In this paper, we propose a deep learning framework to study intelligent diagnosis using Chinese EMR data, which incorporates a convolutional neural network (CNN) into an EMR classification application. The novelty of this paper is reflected in the following: (1) We construct a pediatric medical dictionary based on Chinese EMRs. (2) Word2vec adopted in word embedding is used to achieve the semantic description of the content of Chinese EMRs. (3) A fine-tuning CNN model is constructed to feed the pediatric diagnosis with Chinese EMR data. Our results on real-world pediatric Chinese EMRs demonstrate that the average accuracy and F1-score of the CNN models are up to 81%, which indicates the effectiveness of the CNN model for the classification of EMRs. Particularly, a fine-tuning one-layer CNN performs best among all CNNs, recurrent neural network (RNN) (long short-term memory, gated recurrent unit) and CNN-RNN models, and the average accuracy and F1-score are both up to 83%. CONCLUSION: The CNN framework that includes word segmentation, word embedding and model training can serve as an intelligent auxiliary diagnosis tool for pediatricians. Particularly, a fine-tuning one-layer CNN performs well, which indicates that word order does not appear to have a useful effect on our Chinese EMRs.


Subject(s)
Electronic Health Records , Language , Neural Networks, Computer , Dictionaries as Topic , Humans , Natural Language Processing , Semantics , Vocabulary
16.
Anal Chem ; 91(4): 2634-2643, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30636403

ABSTRACT

Low-molecular-weight (low-MW) compounds have many essential functions in biological processes, and the molecular imaging of as many low-MW compounds as possible is critical for understanding complex biological processes. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is an emerging molecular-imaging technology that enables determination of the spatial distributions and the relative abundances of diverse endogenous compounds in tissues. New matrices suitable for the imaging of low-MW compounds by MALDI-MSI are important for the technological advancement of tissue imaging. In this study, 3,4-dimethoxycinnamic acid (DMCA) was evaluated as a new matrix for enhanced low-MW compound detection by MALDI-MSI because of its strong ultraviolet absorption, low matrix-ion related interferences below m/ z 500, and high ionization efficiency for the analysis of low-MW compounds. DMCA was successfully used for improved in situ detection of low-molecular-weight metabolites ( m/ z < 500) and lipids in rat liver, rat brain, and germinating Chinese-yew seed tissue sections. The use of DMCA led to the successful in situ detection of 303, 200, and 248 low-MW compound ion signals from these three tissues, respectively. Both MALDI-MS/MS and LC-MS/MS were used to identify these ion signals, leading to the identification of 115 low-MW compounds from rat liver (including 53 lipids, 29 oligopeptides, and 33 metabolites), 130 low-MW compounds from rat brain (including 104 lipids, 5 oligopeptides, and 21 metabolites), and 111 low-MW compounds from germinating Chinese-yew seeds (including 77 lipids, 22 oligopeptides, 8 flavonoids, and 4 alkaloids). A larger number of low-MW compounds could be detected and imaged when DMCA was used as the MALDI matrix than with other commonly used MALDI matrices such as 2,5-dihydroxybenzoic acid, α-cyano-4-hydroxycinnamic acid, 2-mercaptobenzothiazole, graphene oxide, and silver nanoparticles. Our work provides a new and powerful matrix for enhanced MALDI-MS profiling of low-MW compounds in both animal and plant tissues.


Subject(s)
Cinnamates/chemistry , Lipids/analysis , Organic Chemicals/analysis , Peptides/analysis , Animals , Brain/metabolism , Brain Chemistry , Cinnamates/radiation effects , Limit of Detection , Liver/chemistry , Liver/metabolism , Male , Rats, Sprague-Dawley , Seeds/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Taxus/chemistry , Ultraviolet Rays
17.
Environ Pollut ; 246: 763-771, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30623832

ABSTRACT

Ambient ultrafine black carbon (uBC) can potentially cross blood-brain barrier, however, very little is currently known about the effects they may have on central nervous system. This study aimed to explore the roles of autophagy in Alzheimer-like pathogenic changes promoted by uBC in SH-SY5Y cells. We firstly found uBC could cause cytotoxicity and oxidative stress in SH-SY5Y cells. Additionally we found uBC initiated progressive development of Alzheimer's disease (AD) associated features, mainly including neuro-inflammation and phosphorylation of tau protein (p-Tau) accumulation. Meanwhile, autophagy process was activated by uBC probably through phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway. RNA interference and autophagosome-lysosome fusion inhibitor were applied to block autophagy process at different stages. Autophagy dysfunction at the initial membrane expansion stage could aggravate p-Tau accumulation and other Alzheimer-like changes in SH-SY5Y cells promoted by uBC. However, autophagy inhibition at the final stage could alleviate p-Tau accumulation caused by uBC. This suggested that inhibition of the infusion of autophagosome and lysosome could possibly activate ubiquitination degradation pathway to regulate p-Tau equilibrium in SH-SY5Y cells. Our findings further raise the concerns about the effects of uBC on the risk of AD and indicate potential roles of autophagy in early Alzheimer-like pathogenic changes caused by ambient uBC.


Subject(s)
Alzheimer Disease/metabolism , Autophagy/drug effects , Carbon/metabolism , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Neuroblastoma/metabolism , Humans
18.
J Cell Biochem ; 120(4): 6542-6554, 2019 04.
Article in English | MEDLINE | ID: mdl-30368881

ABSTRACT

Tumor cells metabolize more glucose to lactate in aerobic or hypoxic conditions than normal cells. Pyruvate kinase isoenzyme type M2 (PKM2) is crucial for tumor cell aerobic glycolysis. We established a role for let-7a-5p/Stat3/hnRNP-A1/PKM2 signaling in breast cancer cell glucose metabolism. PKM2 depletion via small interfering RNA (siRNA) inhibits cell proliferation and aerobic glycolysis in breast cancer cells. Signal transducer and activator of transcription 3 (Stat3) promotes upregulation of heterogeneous nuclear ribonucleoprotein (hnRNP)-A1 expression, hnRNP-A1 binding to pyruvate kinase isoenzyme (PKM) pre messenger RNA, and the subsequent formation of PKM2. This pathway is downregulated by the microRNA let-7a-5p, which functionally targets Stat3, whereas hnRNP-A1 blocks the biogenesis of let-7a-5p to counteract its ability to downregulate the Stat3/hnRNP-A1/PKM2 signaling pathway. The downregulation of Stat3/hnRNP-A1/PKM2 by let-7a-5p is verified using a breast cancer. These results suggest that let-7a-5p, Stat3, and hnRNP-A1 form a feedback loop, thereby regulating PKM2 expression to modulate glucose metabolism of breast cancer cells. These findings elucidate a new pathway mediating aerobic glycolysis in breast cancers and provide an attractive potential target for breast cancer therapeutic intervention.


Subject(s)
Breast Neoplasms/pathology , Carrier Proteins/metabolism , Gene Expression Regulation, Neoplastic , Glucose/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Membrane Proteins/metabolism , MicroRNAs/metabolism , STAT3 Transcription Factor/metabolism , Thyroid Hormones/metabolism , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carrier Proteins/genetics , Cell Proliferation , Feedback, Physiological , Female , Glycolysis , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Humans , Membrane Proteins/genetics , MicroRNAs/genetics , Prognosis , STAT3 Transcription Factor/genetics , Thyroid Hormones/genetics , Tumor Cells, Cultured , Thyroid Hormone-Binding Proteins
19.
Molecules ; 23(12)2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30501083

ABSTRACT

Although the palladium-catalyzed Suzuki-Miyaura cross-coupling of aryl esters has received significant attention, there is a lack of methods that utilize cheap and readily accessible Pd-phosphane catalysts, and can be routinely carried out with high cross-coupling selectivity. Herein, we report the first general method for the cross-coupling of pentafluorophenyl esters (pentafluorophenyl = pfp) by selective C⁻O acyl cleavage. The reaction proceeds efficiently using Pd(0)/phosphane catalyst systems. The unique characteristics of pentafluorophenyl esters are reflected in the fully selective cross-coupling vs. phenolic esters. Of broad synthetic interest, this report establishes pentafluorophenyl esters as new, highly reactive, bench-stable, economical, ester-based, electrophilic acylative reagents via acyl-metal intermediates. Mechanistic studies strongly support a unified reactivity scale of acyl electrophiles by C(O)⁻X (X = N, O) activation. The reactivity of pfp esters can be correlated with barriers to isomerization around the C(acyl)⁻O bond.


Subject(s)
Esters/chemistry , Fluorocarbons/chemistry , Palladium/chemistry , Boronic Acids/chemistry , Catalysis
20.
Phytochem Anal ; 29(4): 351-364, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29667236

ABSTRACT

INTRODUCTION: Mass spectrometry imaging (MSI) as a label-free and powerful imaging technique enables in situ evaluation of a tissue metabolome and/or proteome, becoming increasingly popular in the detection of plant endogenous molecules. OBJECTIVE: The characterisation of structure and spatial information of endogenous molecules in plants are both very important aspects to better understand the physiological mechanism of plant organism. METHODS: Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a commonly-used tissue imaging technique, which requires matrix to assist in situ detection of a variety of molecules on the surface of a tissue section. In previous studies, MALDI-MSI was mostly used for the detection of molecules from animal tissue sections, compared to plant samples due to cell structural limitations, such as plant cuticles, epicuticular waxes, and cell walls. Despite the enormous progress that has been made in tissue imaging, there is still a challenge for MALDI-MSI suitable for the imaging of endogenous compounds in plants. RESULTS: This review summarises the recent advances in MALDI-MSI, focusing on the application of in situ detection of endogenous molecules in different plant organs, i.e. root, stem, leaf, flower, fruit, and seed. CONCLUSION: Further improvements on instrumentation sensitivity, matrix selection, image processing and sample preparation will expand the application of MALDI-MSI in plant research.


Subject(s)
Plant Structures/metabolism , Plants/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Metabolomics , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...