Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Mol Pharm ; 21(6): 2922-2936, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38751169

ABSTRACT

With the increased prevalence of nonalcoholic steatohepatitis (NASH) in the world, effective pharmacotherapy in clinical practice is still lacking. Previous studies have shown that dibenzazepine (DBZ), a Notch inhibitor, could alleviate NASH development in a mouse model. However, low bioavailability, poor water solubility, and extrahepatic side effects restrict its clinical application. To overcome these barriers, we developed a reactive oxygen species (ROS)-sensitive nanoparticle based on the conjugation of bilirubin to poly(ethylene glycol) (PEG) chains, taking into account the overaccumulation of hepatic ROS in the pathologic state of nonalcoholic steatohepatitis (NASH). The PEGylated bilirubin can self-assemble into nanoparticles in an aqueous solution and encapsulate insoluble DBZ into its hydrophobic cavity. DBZ nanoparticles (DBZ Nps) had good stability, rapidly released DBZ in response to H2O2, and effectively scavenged intracellular ROS of hepatocytes. After systemic administration, DBZ Nps could accumulate in the liver of the NASH mice, extend persistence in circulation, and improve the bioavailability of DBZ. Furthermore, DBZ Nps significantly improved glucose intolerance, relieved hepatic lipid accumulation and inflammation, and ameliorated NASH-induced liver fibrosis. Additionally, DBZ Nps had no significant extrahepatic side effects. Taken together, our results highlight the potential of the ROS-sensitive DBZ nanoparticle as a promising therapeutic strategy for NASH.


Subject(s)
Lipogenesis , Liver , Mice, Inbred C57BL , Nanoparticles , Non-alcoholic Fatty Liver Disease , Reactive Oxygen Species , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Reactive Oxygen Species/metabolism , Mice , Nanoparticles/chemistry , Lipogenesis/drug effects , Male , Liver/metabolism , Liver/drug effects , Liver/pathology , Receptors, Notch/metabolism , Receptors, Notch/antagonists & inhibitors , Humans , Inflammation/drug therapy , Inflammation/metabolism , Bilirubin , Polyethylene Glycols/chemistry , Disease Models, Animal , Hepatocytes/metabolism , Hepatocytes/drug effects , Dibenzazepines
2.
Adv Mater ; 36(15): e2312528, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240412

ABSTRACT

Genetic manipulations and pharmaceutical interventions to disturb lipid metabolism homeostasis have emerged as an attractive approach for the management of cancer. However, the research on the utilization of bioactive materials to modulate lipid metabolism homeostasis remains constrained. In this study, heptakis (2,3,6-tri-O-methyl)-ß-cyclodextrin (TMCD) is utilized to fabricate homomultivalent polymeric nanotraps, and surprisingly, its unprecedented ability to perturb lipid metabolism homeostasis and induce pyroptosis in tumor cells is found. Through modulation of the density of TMCD arrayed on the polymers, one top-performing nanotrap, PTMCD4, exhibits the most powerful cholesterol-trapping and depletion capacity, thus achieving prominent cytotoxicity toward different types of tumor cells and encouraging antitumor effects in vivo. The interactions between PTMCD4 and biomembranes of tumor cells effectively enable the reduction of cellular phosphatidylcholine and cholesterol levels, thus provoking damage to the biomembrane integrity and perturbation of lipid metabolism homeostasis. Additionally, the interplays between PTMCD4 and lysosomes also induce lysosomal stress, activate the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasomes, and subsequently trigger tumor cell pyroptosis. To sum up, this study first introduces dendronized bioactive polymers to manipulate lipid metabolism and has shed light on another innovative insight for cancer therapy.


Subject(s)
Amides , Cyclopropanes , Neoplasms , Pyroptosis , Humans , Lipid Metabolism , Homeostasis , Cholesterol , Neoplasms/drug therapy , Polymers/metabolism
3.
Theranostics ; 14(1): 96-115, 2024.
Article in English | MEDLINE | ID: mdl-38164145

ABSTRACT

Messenger RNA (mRNA) has emerged as a promising therapeutic agent for the prevention and treatment of various diseases. mRNA vaccines, in particular, offer an alternative approach to conventional vaccines, boasting high potency, rapid development capabilities, cost-effectiveness, and safe administration. However, the clinical application of mRNA vaccines is hindered by the challenges of mRNA instability and inefficient in vivo delivery. In recent times, remarkable technological advancements have emerged to address these challenges, utilizing two main approaches: ex vivo transfection of dendritic cells (DCs) with mRNA and direct injection of mRNA-based therapeutics, either with or without a carrier. This review offers a comprehensive overview of major non-viral vectors employed for mRNA vaccine delivery. It showcases notable preclinical and clinical studies in the field of cancer immunotherapy and discusses important considerations for advancing these promising vaccine platforms for broader therapeutic applications. Additionally, we provide insights into future possibilities and the remaining challenges in mRNA delivery technology, emphasizing the significance of ongoing research in mRNA-based therapeutics.


Subject(s)
Neoplasms , Vaccines , Humans , RNA, Messenger/genetics , mRNA Vaccines , Immunotherapy , Neoplasms/drug therapy
4.
Molecules ; 28(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37570771

ABSTRACT

The aberrant expansion of GGGGCC hexanucleotide repeats within the first intron of the C9orf72 gene represent the predominant genetic etiology underlying amyotrophic lateral sclerosis (ALS) and frontal temporal dementia (FTD). The transcribed r(GGGGCC)n RNA repeats form RNA foci, which recruit RNA binding proteins and impede their normal cellular functions, ultimately resulting in fatal neurodegenerative disorders. Furthermore, the non-canonical translation of the r(GGGGCC)n sequence can generate dipeptide repeats, which have been postulated as pathological causes. Comprehensive structural analyses of r(GGGGCC)n have unveiled its polymorphic nature, exhibiting the propensity to adopt dimeric, hairpin, or G-quadruplex conformations, all of which possess the capacity to interact with RNA binding proteins. Small molecules capable of binding to r(GGGGCC)n have been discovered and proposed as potential lead compounds for the treatment of ALS and FTD. Some of these molecules function in preventing RNA-protein interactions or impeding the phase transition of r(GGGGCC)n. In this review, we present a comprehensive summary of the recent advancements in the structural characterization of r(GGGGCC)n, its propensity to form RNA foci, and its interactions with small molecules and proteins. Specifically, we emphasize the structural diversity of r(GGGGCC)n and its influence on partner binding. Given the crucial role of r(GGGGCC)n in the pathogenesis of ALS and FTD, the primary objective of this review is to facilitate the development of therapeutic interventions targeting r(GGGGCC)n RNA.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Dementia/genetics , Base Sequence , DNA Repeat Expansion , RNA/genetics , RNA/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
5.
Acta Biomater ; 168: 484-496, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37392933

ABSTRACT

Activated hepatic stellate cells (HSCs) are considered the key driver of excessive extracellular matrix and abnormal angiogenesis, which are the main pathological manifestations of hepatic fibrosis. However, the absence of specific targeting moieties has rendered the development of HSC-targeted drug delivery systems a significant obstacle in the treatment of liver fibrosis. Here we have identified a notable increase in fibronectin expression on HSCs, which positively correlates with the progression of hepatic fibrosis. Thus, we decorated PEGylated liposomes with CREKA, a peptide with high affinity for fibronectin, to facilitate the targeted delivery of sorafenib to activated HSCs. The CREKA-coupled liposomes exhibited enhanced cellular uptake in the human hepatic stellate cell line LX2 and selective accumulation in CCl4-induced fibrotic liver through the recognition of fibronectin. When loaded with sorafenib, the CREKA-modified liposomes effectively suppressed HSC activation and collagen accumulation in vitro. Furthermore. in vivo results demonstrated that the administration of sorafenib-loaded CREKA-liposomes at a low dose significantly mitigated CCl4-induced hepatic fibrosis, prevented inflammatory infiltration and reduced angiogenesis in mice. These findings suggest that CREKA-coupled liposomes have promising potential as a targeted delivery system for therapeutic agents to activated HSCs, thereby providing an efficient treatment option for hepatic fibrosis. STATEMENT OF SIGNIFICANCE: In liver fibrosis, activated hepatic stellate cells (aHSCs) are the key driver of extracellular matrix and abnormal angiogenesis. Our investigation has revealed a significant elevation in fibronectin expression on aHSCs, which is positively associated with the progression of hepatic fibrosis. Thus, we developed PEGylated liposomes decorated with CREKA, a molecule with a high affinity for fibronectin, to facilitate the targeted delivery of sorafenib to aHSCs. The CREKA-coupled liposomes can specifically target aHSCs both in vitro and in vivo. Loading sorafenib into CREKA-Lip significantly alleviated CCl4-induced liver fibrosis, angiogenesis and inflammation at low doses. These findings suggest that our drug delivery system holds promise as a viable therapeutic option for liver fibrosis with minimal risk of adverse effects.


Subject(s)
Hepatic Stellate Cells , Liposomes , Mice , Humans , Animals , Hepatic Stellate Cells/metabolism , Liposomes/chemistry , Fibronectins/metabolism , Sorafenib/pharmacology , Sorafenib/therapeutic use , Liver Cirrhosis/metabolism , Liver/pathology , Polyethylene Glycols/pharmacology
6.
Biomaterials ; 301: 122232, 2023 10.
Article in English | MEDLINE | ID: mdl-37418856

ABSTRACT

Liver fibrosis is featured by activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM). The Golgi apparatus in HSCs plays a vital role in synthesis and secretion of ECM proteins, while its targeted disruption in activated HSCs could be considered as a promising approach for liver fibrosis treatment. Here, we developed a multitask nanoparticle CREKA-CS-RA (CCR) to specifically target the Golgi apparatus of activated HSCs, based on CREKA (a specific ligand of fibronectin) and chondroitin sulfate (CS, a major ligand of CD44), in which retinoic acid (a Golgi apparatus-disturbing agent) chemically conjugated and vismodegib (a hedgehog inhibitor) encapsulated. Our results showed that CCR nanoparticles specifically targeted activated HSCs and preferentially accumulated in the Golgi apparatus. Systemic administration of CCR nanoparticles exhibited significantly accumulation in CCl4-induced fibrotic liver, which was attributed to specific recognition with fibronectin and CD44 on activated HSCs. CCR nanoparticles loaded with vismodegib not only disrupted Golgi apparatus structure and function but also inhibited the hedgehog signaling pathway, thus markedly suppressing HSC activation and ECM secretion in vitro and in vivo. Moreover, vismodegib-loaded CCR nanoparticles effectively inhibited the fibrogenic phenotype in CCl4-induced liver fibrosis mice without causing obvious toxicity. Collectively, these findings indicate that this multifunctional nanoparticle system can effectively deliver therapeutic agents to the Golgi apparatus of activated HSCs, thus has potential treatment of liver fibrosis with minimal side effects.


Subject(s)
Hepatic Stellate Cells , Nanoparticles , Mice , Animals , Hedgehog Proteins/metabolism , Fibronectins/metabolism , Ligands , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Nanoparticles/chemistry , Golgi Apparatus/metabolism , Liver/pathology
7.
Metabolism ; 145: 155610, 2023 08.
Article in English | MEDLINE | ID: mdl-37277061

ABSTRACT

OBJECTIVE: Cholesterol gallstone disease (CGD) is closely related to cholesterol metabolic disorder. Glutaredoxin-1 (Glrx1) and Glrx1-related protein S-glutathionylation are increasingly being observed to drive various physiological and pathological processes, especially in metabolic diseases such as diabetes, obesity and fatty liver. However, Glrx1 has been minimally explored in cholesterol metabolism and gallstone disease. METHODS: We first investigated whether Glrx1 plays a role in gallstone formation in lithogenic diet-fed mice using immunoblotting and quantitative real-time PCR. Then a whole-body Glrx1-deficient (Glrx1-/-) mice and hepatic-specific Glrx1-overexpressing (AAV8-TBG-Glrx1) mice were generated, in which we analyzed the effects of Glrx1 on lipid metabolism upon LGD feeding. Quantitative proteomic analysis and immunoprecipitation (IP) of glutathionylated proteins were performed. RESULTS: We found that protein S-glutathionylation was markedly decreased and the deglutathionylating enzyme Glrx1 was greatly increased in the liver of lithogenic diet-fed mice. Glrx1-/- mice were protected from gallstone disease induced by a lithogenic diet because their biliary cholesterol and cholesterol saturation index (CSI) were reduced. Conversely, AAV8-TBG-Glrx1 mice showed greater gallstone progression with increased cholesterol secretion and CSI. Further studies showed that Glrx1-overexpressing greatly altered bile acid levels and/or composition to increase intestinal cholesterol absorption by upregulating Cyp8b1. In addition, liquid chromatography-mass spectrometry and IP analysis revealed that Glrx1 also affected the function of asialoglycoprotein receptor 1 (ASGR1) by mediating its deglutathionylation, thereby altering the expression of LXRα and controlling cholesterol secretion. CONCLUSION: Our findings present novel roles of Glrx1 and Glrx1-regulated protein S-glutathionylation in gallstone formation through the targeting of cholesterol metabolism. Our data advises Glrx1 significantly increased gallstone formation by simultaneously increase bile-acid-dependent cholesterol absorption and ASGR1- LXRα-dependent cholesterol efflux. Our work suggests the potential effects of inhibiting Glrx1 activity to treat cholelithiasis.


Subject(s)
Gallstones , Animals , Mice , Bile Acids and Salts/metabolism , Cholesterol/metabolism , Gallstones/metabolism , Glutaredoxins/genetics , Glutaredoxins/metabolism , Glutaredoxins/pharmacology , Lipid Metabolism/genetics , Liver/metabolism , Mice, Inbred C57BL , Protein S/metabolism , Protein S/pharmacology , Proteomics
8.
Front Endocrinol (Lausanne) ; 14: 1117414, 2023.
Article in English | MEDLINE | ID: mdl-36936176

ABSTRACT

CRELD2, a member of the cysteine-rich epidermal growth factor-like domain (CRELD) protein family, is both an endoplasmic reticulum (ER)-resident protein and a secretory factor. The expression and secretion of CRELD2 are dramatically induced by ER stress. CRELD2 is ubiquitously expressed in multiple tissues at different levels, suggesting its crucial and diverse roles in different tissues. Recent studies suggest that CRELD2 is associated with cartilage/bone metabolism homeostasis and pathological conditions involving ER stress such as chronic liver diseases, cardiovascular diseases, kidney diseases, and cancer. Herein, we first summarize ER stress and then critically review recent advances in the knowledge of the characteristics and functions of CRELD2 in various human diseases. Furthermore, we highlight challenges and present future directions to elucidate the roles of CRELD2 in human health and disease.


Subject(s)
Cell Adhesion Molecules , Extracellular Matrix Proteins , Humans , Cell Adhesion Molecules/metabolism , Endoplasmic Reticulum/metabolism , Epidermal Growth Factor/metabolism , Endoplasmic Reticulum Stress
9.
Drug Metab Dispos ; 51(2): 237-248, 2023 02.
Article in English | MEDLINE | ID: mdl-36414407

ABSTRACT

Metabolic diseases are a series of metabolic disorders that include obesity, diabetes, insulin resistance, hypertension, and hyperlipidemia. The increased prevalence of metabolic diseases has resulted in higher mortality and mobility rates over the past decades, and this has led to extensive research focusing on the underlying mechanisms. Xenobiotic receptors (XRs) are a series of xenobiotic-sensing nuclear receptors that regulate their downstream target genes expression, thus defending the body from xenobiotic and endotoxin attacks. XR activation is associated with the development of a number of metabolic diseases such as obesity, nonalcoholic fatty liver disease, type 2 diabetes, and cardiovascular diseases, thus suggesting an important role for XRs in modulating metabolic diseases. However, the regulatory mechanism of XRs in the context of metabolic disorders under different nutrient conditions is complex and remains controversial. This review summarizes the effects of XRs on different metabolic components (cholesterol, lipids, glucose, and bile acids) in different tissues during metabolic diseases. As chronic inflammation plays a critical role in the initiation and progression of metabolic diseases, we also discuss the impact of XRs on inflammation to comprehensively recognize the role of XRs in metabolic diseases. This will provide new ideas for treating metabolic diseases by targeting XRs. SIGNIFICANCE STATEMENT: This review outlines the current understanding of xenobiotic receptors on nutrient metabolism and inflammation during metabolic diseases. This work also highlights the gaps in this field, which can be used to direct the future investigations on metabolic diseases treatment by targeting xenobiotic receptors.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Diseases , Humans , Xenobiotics/metabolism , Inflammation , Obesity/metabolism
10.
J Pharm Anal ; 13(12): 1548-1561, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38223455

ABSTRACT

Excessive N-acetyl-p-benzoquinone imine (NAPQI) formation is a starting event that triggers oxidative stress and subsequent hepatocyte necrosis in acetaminophen (APAP) overdose caused acute liver failure (ALF). S-glutathionylation is a reversible redox post-translational modification and a prospective mechanism of APAP hepatotoxicity. Glutaredoxin-1 (Glrx1), a glutathione-specific thioltransferase, is a primary enzyme to catalyze deglutathionylation. The objective of this study was to explored whether and how Glrx1 is associated with the development of ALF induced by APAP. The Glrx1 knockout mice (Glrx1-/-) and liver-specific overexpression of Glrx1 (AAV8-Glrx1) mice were produced and underwent APAP-induced ALF. Pirfenidone (PFD), a potential inducer of Glrx1, was administrated preceding APAP to assess its protective effects. Our results revealed that the hepatic total protein S-glutathionylation (PSSG) increased and the Glrx1 level reduced in mice after APAP toxicity. Glrx1-/- mice were more sensitive to APAP overdose, with higher oxidative stress and more toxic metabolites of APAP. This was attributed to Glrx1 deficiency increasing the total hepatic PSSG and the S-glutathionylation of cytochrome p450 3a11 (Cyp3a11), which likely increased the activity of Cyp3a11. Conversely, AAV8-Glrx1 mice were defended against liver damage caused by APAP overdose by inhibiting the S-glutathionylation and activity of Cyp3a11, which reduced the toxic metabolites of APAP and oxidative stress. PFD precede administration upregulated Glrx1 expression and alleviated APAP-induced ALF by decreasing oxidative stress. We have identified the function of Glrx1 mediated PSSG in liver injury caused by APAP overdose. Increasing Glrx1 expression may be investigated for the medical treatment of APAP-caused hepatic injury.

11.
Front Immunol ; 13: 958790, 2022.
Article in English | MEDLINE | ID: mdl-36045667

ABSTRACT

Diabetic nephropathy (DN) is a chronic, inflammatory disease affecting millions of diabetic patients worldwide. DN is associated with proteinuria and progressive slowing of glomerular filtration, which often leads to end-stage kidney diseases. Due to the complexity of this metabolic disorder and lack of clarity about its pathogenesis, it is often more difficult to diagnose and treat than other kidney diseases. Recent studies have highlighted that the immune system can inadvertently contribute to DN pathogenesis. Cells involved in innate and adaptive immune responses can target the kidney due to increased expression of immune-related localization factors. Immune cells then activate a pro-inflammatory response involving the release of autocrine and paracrine factors, which further amplify inflammation and damage the kidney. Consequently, strategies to treat DN by targeting the immune responses are currently under study. In light of the steady rise in DN incidence, this timely review summarizes the latest findings about the role of the immune system in the pathogenesis of DN and discusses promising preclinical and clinical therapies.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Kidney Failure, Chronic , Diabetes Mellitus/pathology , Diabetic Nephropathies/pathology , Humans , Immunity , Inflammation/metabolism , Kidney/pathology , Kidney Failure, Chronic/etiology
12.
Diabetes ; 71(11): 2344-2359, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35972224

ABSTRACT

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an emerging regulator in metabolic control. Hypothalamic proopiomelanocortin (POMC) neurons play critical roles in maintaining whole-body energy homeostasis. Whether MANF in POMC neurons is required for the proper regulation of energy balance remains unknown. Here, we showed that mice lacking MANF in POMC neurons were more prone to develop diet-induced obesity. In addition, the ablation of MANF induced endoplasmic reticulum (ER) stress and leptin resistance in the hypothalamus, reduced POMC expression and posttranslational processing, and ultimately decreased sympathetic nerve activity and thermogenesis in brown adipose tissue (BAT). Conversely, MANF overexpression in hypothalamic POMC neurons attenuated ER stress, increased POMC expression and processing, and then stimulated sympathetic innervation and activity in BAT, resulting in increased BAT thermogenesis, thus protecting mice against dietary obesity. Overall, our findings provide evidence that MANF is required for POMC neurons to combat obesity.


Subject(s)
Adipose Tissue, Brown , Pro-Opiomelanocortin , Mice , Animals , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Adipose Tissue, Brown/metabolism , Leptin/metabolism , Thermogenesis/genetics , Obesity/genetics , Obesity/metabolism , Neurons/metabolism , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Diet
13.
Nat Commun ; 13(1): 3489, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35715443

ABSTRACT

Aberrant amino acid metabolism is a common event in obesity. Particularly, subjects with obesity are characterized by the excessive plasma kynurenine (Kyn). However, the primary source of Kyn and its impact on metabolic syndrome are yet to be fully addressed. Herein, we show that the overexpressed indoleamine 2,3-dioxygenase 1 (IDO1) in adipocytes predominantly contributes to the excessive Kyn, indicating a central role of adipocytes in Kyn metabolism. Depletion of Ido1 in adipocytes abrogates Kyn accumulation, protecting mice against obesity. Mechanistically, Kyn impairs lipid homeostasis in adipocytes via activating the aryl hydrocarbon receptor (AhR)/Signal transducer and activator of transcription 3 /interleukin-6 signaling. Genetic ablation of AhR in adipocytes abolishes the effect of Kyn. Moreover, supplementation of vitamin B6 ameliorated Kyn accumulation, protecting mice from obesity. Collectively, our data support that adipocytes are the primary source of increased circulating Kyn, while elimination of accumulated Kyn could be a viable strategy against obesity.


Subject(s)
Insulin Resistance , Kynurenine , Adipocytes/metabolism , Animals , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interleukin-6/metabolism , Kynurenine/metabolism , Mice , Obesity , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , STAT3 Transcription Factor/metabolism , Tryptophan Oxygenase/metabolism
14.
FASEB J ; 36(6): e22349, 2022 06.
Article in English | MEDLINE | ID: mdl-35567505

ABSTRACT

Excessive lipid accumulation, inflammation, and fibrosis in the liver are the major characteristics of non-alcoholic steatohepatitis (NASH). Mesencephalic astrocyte-derived neurotrophic factor (MANF) plays an important role in metabolic homeostasis, raising the possibility that it is involved in NASH. Here, we reduced and increased MANF levels in mice in order to explore its influence on hepatic triglyceride homeostasis, inflammation, and fibrosis during NASH progression. The MANF expression was decreased in Western diet-induced NASH mice. In vivo, liver-specific MANF knockout exacerbated hepatic lipid accumulation, inflammation, and fibrosis of mice induced by Western diet, while liver-specific MANF overexpression mitigated these NASH pathogenic features. In vitro, knocking down MANF in primary hepatocyte cultures aggravated hepatic steatosis and inflammation, which MANF overexpression markedly attenuated. Studies in vitro and in vivo suggested that MANF regulated hepatic lipid synthesis by modulating SREBP1 expression. Inhibiting SREBP1 in primary hepatocytes blocked lipid accumulation after MANF knockdown. MANF overexpression reversed LXRs agonist GW3965 induced SREBP1 and LIPIN1 expression. MANF decreased the expression of pro-inflammatory cytokines by inhibiting NF-κB phosphorylation. These results suggest that MANF can protect against NASH by regulating SREBP1 expression and NF-κB signaling.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Astrocytes/metabolism , Diet, Western , Fibrosis , Inflammation/metabolism , Lipids , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism
15.
Biochem Biophys Res Commun ; 602: 163-169, 2022 04 30.
Article in English | MEDLINE | ID: mdl-35278889

ABSTRACT

Paracetamol (APAP), an over-the-counter drug, is normally safe within the therapeutic dose range but can cause irreversible liver damage after an overdose. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER) stress protein and plays a crucial role in metabolic disease. However, the role of MANF in APAP-induced acute hepatotoxicity is still unknown. We used hepatocyte-specific MANF-knockout mice and hepatocyte-specific MANF transgenic mice to investigate the role of hepatocyte-derived MANF in APAP-induced acute liver injury. MANF deficiency was associated with a decreased expression of detoxification enzymes, aggravated glutathione depletion and apoptosis in hepatocytes. Mechanistically, MANF knockout significantly increased PERK-eIF2α-ATF4-CHOP signaling pathway. Blockade of PERK abolished MANF deficiency-over-induced hepatotoxicity after APAP administration. Conversely, hepatocyte-specific MANF overexpression attenuated APAP-induced hepatotoxicity by downregulating the PERK-eIF2α-ATF4-CHOP signaling pathway. Thus, hepatocyte-derived MANF may play a protective role in APAP-induced hepatotoxicity.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury, Chronic , Acetaminophen/toxicity , Animals , Apoptosis , Astrocytes/metabolism , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2/metabolism , Mice , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Signal Transduction
16.
Trends Endocrinol Metab ; 33(4): 236-246, 2022 04.
Article in English | MEDLINE | ID: mdl-35135706

ABSTRACT

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum-resident protein and a secretory factor and has beneficial effects in multiple diseases. Recent evidence shows that its circulating levels in humans are dynamically regulated under various metabolic diseases, including diabetes, obesity, fatty liver, and cardiovascular diseases, suggesting that MANF may play a role in these pathological states. Also, its downregulation in mice impairs glucose homeostasis, promotes lipid accumulation in the liver, reduces energy expenditure, and induces inflammation. Conversely, MANF overexpression prevents or mitigates some of these metabolic disturbances. In particular, systemic MANF administration alleviates dietary obesity and related metabolic disorders in obese mice. We therefore propose that MANF might be a promising target for treating chronic metabolic diseases.


Subject(s)
Metabolic Diseases , Nerve Growth Factors , Animals , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Humans , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Mice , Nerve Growth Factors/metabolism , Nerve Growth Factors/therapeutic use , Obesity/metabolism
17.
J Control Release ; 341: 215-226, 2022 01.
Article in English | MEDLINE | ID: mdl-34822908

ABSTRACT

Although the individual role of ligand modification or rigidity modulation on oral administration of nanoparticle (NP) has been investigated, how they mutually affect each other remains to be elucidated. Here, we fabricated different rigidity NP with or without surface decoration of FcBP, a neonatal Fc receptor domain-binding peptide. In vitro studies showed that, without FcBP modification, stiff NP had higher transcytosis efficiency across the epithelium than softer NP, due to the different endocytosis mechanisms, intracellular trafficking routes, and exocytosis rate. Notably, after FcBP modification, such difference was narrowed, in a manner that was more favorable for softer NP to "catch up" with stiff NP, suggesting ligand modification was more conducive to exert transcytosis-promoting efficacy on softer NP. In vivo experiments demonstrated that, for ligand-free NP, high rigidity was required for efficient oral absorption and liver distribution. Further FcBP modification decreased that "rigidity threshold", and expanded the feasible rigidity range from stiff NP to softer NP. Upon oral administration, FcBP-modified dexamethasone-loaded softer NP achieved a therapeutic efficacy comparable with stiff NP on alleviating liver fibrosis. Collectively, our study highlighted the necessity of coordinating ligand modification and rigidity modulation for oral drug delivery.


Subject(s)
Nanoparticles , Drug Delivery Systems , Humans , Ligands , Liver Cirrhosis/drug therapy , Transcytosis
18.
Front Mol Biosci ; 8: 766855, 2021.
Article in English | MEDLINE | ID: mdl-34805276

ABSTRACT

Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis and even cancer. The US Food and Drug Administration has not approved any drugs that act directly against liver fibrosis. The only treatments currently available are drugs that eliminate pathogenic factors, which show poor efficacy; and liver transplantation, which is expensive. This highlights the importance of clarifying the mechanism of liver fibrosis and searching for new treatments against it. This review summarizes how parenchymal, nonparenchymal cells, inflammatory cells and various processes (liver fibrosis, hepatic stellate cell activation, cell death and proliferation, deposition of extracellular matrix, cell metabolism, inflammation and epigenetics) contribute to liver fibrosis. We highlight discoveries of novel therapeutic targets, which may provide new insights into potential treatments for liver fibrosis.

19.
Sheng Li Xue Bao ; 73(5): 745-754, 2021 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-34708231

ABSTRACT

SIRT6, a member of the silencing information regulatory protein family, is a nicotinamide adenine dinucleotide-dependent histone deacetylase and an ADP-ribose transferase enzyme. It plays an important role in fundamental physiological and pathological processes, including lipid metabolism, inflammation, oxidative stress and fibrosis, and is considered as a potential therapeutic target for metabolic syndrome. SIRT6 knockout mice displayed severe fatty liver, and the expression of SIRT6 in the liver of nonalcoholic steatohepatitis (NASH) mice was significantly lower than that of normal mice. Overexpression of SIRT6 significantly ameliorated NASH-induced liver damage. It is suggested that SIRT6 may play a key role in protecting against NASH. In this paper, we review the important regulatory functions of SIRT6 in the occurrence and development of NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Sirtuins , Animals , Liver , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress , Sirtuins/genetics , Sirtuins/metabolism
20.
Int J Nanomedicine ; 16: 6441-6453, 2021.
Article in English | MEDLINE | ID: mdl-34584410

ABSTRACT

BACKGROUND: Renal fibrosis is the common pathway in chronic kidney diseases progression to end-stage renal disease, but to date, no clinical drug for its treatment is approved. It has been demonstrated that the inhibitor of proto-oncogene Ras, farnesylthiosalicylic acid (FTS), shows therapeutic potential for renal fibrosis, but its application was hindered by the water-insolubility and low bioavailability. Hence, in this study, we improved these properties of FTS by encapsulating it into bovine serum albumin nanoparticles (AN-FTS) and tested its therapeutic effect in renal fibrosis. METHODS: AN-FTS was developed using a classic emulsification-solvent ultrasonication. The pharmacokinetics of DiD-loaded albumin nanoparticle were investigated in SD rats. The biodistribution and therapeutic efficacy of AN-FTS was assessed in a mouse model of renal fibrosis induced by unilateral ureteral obstruction (UUO). RESULTS: AN-FTS showed a uniform spherical shape with the size of 100.6 ± 1.12 nm and PDI < 0.25. In vitro, AN-FTS displayed stronger inhibitory effects on the activation of renal fibroblasts cells NRK-49F than free FTS. In vivo, AN-FTS showed significantly higher peak concentration and area under the concentration-time curve. After intravenous administration to UUO-induced renal fibrosis mice, AN-FTS accumulated preferentially in the fibrotic kidney, and alleviated renal fibrosis and inflammation significantly more than the free drug. Mechanistically, the improved anti-fibrosis effect of AN-FTS was associated with greater inhibition in renal epithelial-to-mesenchymal transformation process via Ras/Raf1/p38 signaling pathway. CONCLUSION: The study reveals that AN-FTS is capable of delivering FTS to fibrotic kidney and showed superior therapeutic efficacy for renal fibrosis.


Subject(s)
Nanoparticles , Signal Transduction , Albumins , Animals , Farnesol/analogs & derivatives , Fibrosis , Mice , Proto-Oncogene Proteins c-raf , Rats , Rats, Sprague-Dawley , Salicylates , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...