Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioprocess Biosyst Eng ; 43(5): 811-820, 2020 May.
Article in English | MEDLINE | ID: mdl-31915960

ABSTRACT

A novel and efficient facultative anaerobic denitrifying bacterium was isolated and identified as Pseudomonas citronellolis WXP-4. The strain WXP-4 could achieve 100% nitrate and nitrite removal efficiency utilizing sodium succinate as a carbon source, C/N ratio 7, pH 7.0, and temperature 40 °C under both aerobic and anaerobic conditions. The bacterium could tolerate a wide range of NO3--N concentrations from 100 to 1000 mg/L with a maximum nitrogen removal rate of 32.05 mg/(L h). An interesting phenomenon was found that no N2O emission occurred during the denitrifying process under anaerobic conditions, while there was 0.06 mg/L under aerobic conditions. This phenomenon had been confirmed by fluorescence quantitative PCR and the results showed that the relative abundance of nosZ gene increased by 17-fold based on the ratio of anaerobic to aerobic, and thus, nosZ gene could encode more nitrous oxide reductase to accelerate the conversion of N2O under anaerobic conditions. Moreover, the narG, nirK, and norB genes were also identified in the denitrifying pathway of the strain WXP-4. This investigation has demonstrated enormous potential for the future application in wastewater treatment systems.


Subject(s)
Bacterial Proteins/metabolism , Denitrification , Nitrates/metabolism , Nitrous Oxide/metabolism , Pseudomonas/metabolism , Aerobiosis , Anaerobiosis , Bacterial Proteins/genetics , Pseudomonas/genetics , Pseudomonas/isolation & purification
2.
Environ Sci Pollut Res Int ; 26(36): 36933-36941, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31745767

ABSTRACT

Conversion of FeII(EDTA)-NO or FeIII(EDTA) into FeII(EDTA) is a key process in a wet flue gas denitrification technology with FeII(EDTA) solution. In this work, the stoichiometry, kinetics, and thermodynamics of FeII(EDTA)-NO reduction by Mn powder were investigated. We first studied the FeII(EDTA)-NO reduction and product distribution to speculate a possible stoichiometry of FeII(EDTA)-NO reduction by Mn powder. Then, the effects of major influencing factors, such as pH value, temperature, and Mn concentration, were studied. The pseudo-second-order model was established to describe the FeII(EDTA)-NO reduction. Simultaneously, according to Arrhenius and Eyring-Polanyi equations, the reaction activation energy (Ea), enthalpy of activation (∆H‡), and entropy of activation (∆S‡) were calculated as 23.68 kJ/mol, 21.148 kJ/mol, and - 149.728 J/(k mol), respectively. Additionally, simultaneous reduction of FeIII(EDTA) and FeII(EDTA)-NO was investigated to better study the mechanism of FeII(EDTA) regeneration, suggesting that there was a competition between the two reduction processes. Finally, a simple schematic mechanism of NO absorption by FeII(EDTA) combined with regeneration of manganese ion and ammonium was proposed. These fundamental researches could offer a valuable guidance for wet flue gas denitrification technology with FeII(EDTA) solution.


Subject(s)
Denitrification , Edetic Acid/metabolism , Kinetics , Manganese , Ferric Compounds , Ferrous Compounds , Iron , Models, Chemical , Oxidation-Reduction , Powders , Temperature , Thermodynamics
3.
Environ Sci Pollut Res Int ; 26(28): 28808-28816, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31377926

ABSTRACT

The effect of Mn powder addition on the simultaneous removal of SO2 and NO coupled with FeII(EDTA) absorption was investigated in this work. In the NO absorption system with FeII(EDTA), SO2 reduced FeII(EDTA)-NO to FeII(EDTA) with a reduction efficiency reaching 88.5% under the conditions of 4000 mg/m3 SO2, pH 8.0, 44 °C, and the flow rate of 1.2 L/min within 60 min. Introducing 0.1 M Mn powder with SO2 increased the FeII(EDTA)-NO reduction efficiency to 96.8% within 5 min. SO2 was also removed by reducing FeII(EDTA)-NO and converted into SO42- at a removal efficiency of 100%. After adding Mn powder, NO was removed through the following reaction: [Formula: see text]. Mn powder functioned as a reductant to regenerate the absorption of solution, and the coordinated NO in FeII(EDTA)-NO was reduced to NH4+. The resource utilization rate of N reached approximately 77.2%. The integrated technology is a potential solution for flue gas treatment in industrial sectors with coal-fired power plants and industrial boiler. Graphical abstract.


Subject(s)
Edetic Acid/chemistry , Ferrous Compounds/chemistry , Manganese/chemistry , Nitric Oxide/isolation & purification , Sulfur Dioxide/isolation & purification , Edetic Acid/analysis , Ferrous Compounds/analysis , Nitric Oxide/chemistry , Powders , Sulfur Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL