Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Infect Drug Resist ; 16: 6871-6879, 2023.
Article in English | MEDLINE | ID: mdl-37908784

ABSTRACT

Objective: This study aimed to examine the radiographic manifestations of seminal vesicle tuberculosis (SVT) on magnetic resonance imaging to gain a deeper understanding of this disease. Methods: The clinical symptoms, general conditions, relevant laboratory tests and radiological data of 13 patients diagnosed with SVT were collected through bacteriological examination. A descriptive analysis was used to explore the composition ratio and rate values of the collected data. Results: All 13 cases (100.0%) showed isointense signals on T1WI and hypointense signals on T2WI in the affected seminal vesicles, with the disappearance of the multi-chambered high signal on T2WI in normal seminal vesicles. Eight cases (61.5%) showed diffusion restriction on DWI of the affected seminal vesicle and significant enhancement on the contrast scan, whereas five cases (38.5%) showed unrestricted diffusion and mild enhancement on the contrast scan. Patients with significant enhancements exhibited higher counts and neutrophil percentages than patients with mild enhancements, with statistically significant differences (Z = 2.196, P = 0.030; Z = 2.781, P = 0.003, respectively). The counts and percentage of lymphocytes, CD3+T cells and CD4+T cells were significantly lower in patients with significant enhancements than in those with mild enhancements, with statistically significant differences (Z = -2.196, P = 0.030; Z = -2.928, P = 0.002; Z = -2.928, P = 0.002; Z = -2.928, P = 0.002, respectively). Patients with significant enhancements were more likely to have active pulmonary tuberculosis than those with mild enhancements, with a statistically significant difference (P = 0.035). Conclusion: Magnetic resonance imaging reveals distinct radiographic features of SVT, and variations in imaging presentations can indicate a patient's immune status.

2.
Anal Chem ; 94(37): 12927-12933, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36083155

ABSTRACT

KRAS is one of the most frequently mutated oncogenes, with KRAS G12C recently becoming an actionable target for small molecule intervention. GDC-6036 is an investigational KRAS G12C inhibitor that acts by irreversibly binding to the switch II pocket of KRAS G12C when in the inactive GDP-bound state, thereby blocking GTP binding and activation. Assessing target engagement is an essential component of clinical drug development, helping to demonstrate mechanistic activity, guide dose selection, understand pharmacodynamics as it relates to clinical response, and explore resistance. Here, we report the development of an ultra-sensitive approach for assessing KRAS G12C engagement. Immunoaffinity enrichment with a commercially available anti-RAS antibody was combined with a targeted 2D-LC-MS/MS technique to quantify both free and GDC-6036-bound KRAS G12C proteins. A KRAS G12C-positive non-small cell lung cancer xenograft model was dosed with GDC-6036 to assess the feasibility of this assay for analyzing small core needle biopsies. As predicted, dose-dependent KRAS G12C engagement was observed. To date, a sensitivity of 0.08 fmol/µg of total protein has been achieved for both free and GDC-6036-bound KRAS G12C with as little as 4 µg of total protein extracted from human tumor samples. This sub-fmol/µg level of sensitivity provides a powerful potential approach to assess covalent inhibitor target engagement at the site of action using core needle tumor biopsies from clinical studies.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Antineoplastic Agents/chemistry , Biopsy , Carcinoma, Non-Small-Cell Lung/drug therapy , Chromatography, Liquid , Guanosine Triphosphate , Humans , Lung Neoplasms/pathology , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Tandem Mass Spectrometry
3.
Chem Sci ; 13(11): 3147-3160, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35414872

ABSTRACT

The antibody-drug conjugate (ADC) is a well-validated modality for the cell-specific delivery of small molecules with impact expanding rapidly beyond their originally-intended purpose of treating cancer. However, antibody-mediated delivery (AMD) remains inefficient, limiting its applicability to targeting highly potent payloads to cells with high antigen expression. Maximizing the number of payloads delivered per antibody is one key way in which delivery efficiency can be improved, although this has been challenging to carry out; with few exceptions, increasing the drug-to-antibody ratio (DAR) above ∼4 typically destroys the biophysical properties and in vivo efficacy for ADCs. Herein, we describe the development of a novel bioconjugation platform combining cysteine-engineered (THIOMAB) antibodies and recombinant XTEN polypeptides for the unprecedented generation of homogeneous, stable "TXCs" with DAR of up to 18. Across three different bioactive payloads, we demonstrated improved AMD to tumors and Staphylococcus aureus bacteria for high-DAR TXCs relative to conventional low-DAR ADCs.

4.
Anal Chem ; 92(13): 9412-9420, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32510921

ABSTRACT

Mass spectrometry has recently emerged as a powerful analytical tool for the assessment of pharmacokinetics and biomarkers in drug development. Compared with ligand binding assays, a major advantage of mass spectrometry-based assays is that they are less dependent on high quality binding reagents, while a key limitation is the relatively lower sensitivity. To address the sensitivity issue, we have developed a generic reagent, ultratargeted two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) method which combines commercially available protein A affinity capture, targeted analyte isolation by 2D-LC, and targeted detection by multiple reaction monitoring (MRM). A targeted-2D-with-dilution configuration was designed to automate 2D-LC-MS/MS. This method was systematically evaluated using an anti-CD22 monoclonal antibody spiked into monkey and human serum, where lower limits of quantification (LLOQ) of 0.78 and 1.56 ng/mL were achieved, respectively. This represents an over 100-fold improvement in assay sensitivity compared to the conventional LC-MS/MS method. The performance of the method was further confirmed by analyzing another monoclonal antibody, bevacizumab, as well as a soluble antigen, circulating PD-L1. The results indicate that our method enables quantification of antibody therapeutics and antigen biomarkers in both clinical and nonclinical samples in the pg/mL to low ng/mL range. Protein A affinity capture was employed as a universal sample preparation procedure applicable to both full-length antibody therapeutics and antibody-antigen complexes. This novel method is also fully automated and proven to be highly robust for routine bioanalysis in drug development.


Subject(s)
Antibodies, Monoclonal/blood , Tandem Mass Spectrometry/methods , Animals , Antigen-Antibody Complex/blood , Automation , B7-H1 Antigen/blood , Bevacizumab/blood , Chromatography, High Pressure Liquid , Haplorhini , Humans , Hydrogen-Ion Concentration , Limit of Detection , Sialic Acid Binding Ig-like Lectin 2/immunology
5.
Bioorg Med Chem Lett ; 30(4): 126907, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31902710

ABSTRACT

Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates.


Subject(s)
Antibodies, Monoclonal/immunology , Drug Carriers/chemistry , Estrogen Receptor alpha/immunology , Antibodies, Monoclonal/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacology , Drug Design , Estrogen Receptor alpha/metabolism , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Immunoconjugates/pharmacology , MCF-7 Cells , Proteolysis/drug effects , Receptor, ErbB-2/metabolism
6.
Methods Mol Biol ; 2078: 213-219, 2020.
Article in English | MEDLINE | ID: mdl-31643059

ABSTRACT

Antibody-drug conjugates (ADCs) have complex molecular structures as they are composed of both small and large molecules, and they often undergo biotransformation over time in circulation. Here we describe a high-resolution Orbitrap MS approach for the characterization of ADC biotransformation and stability. Compared with conventional approach by Q-TOF MS, the method described here significantly improved the mass resolution and enabled more comprehensive characterization of ADC catabolites. It is particularly beneficial for characterizing ADC biotransformations with small mass changes.


Subject(s)
Immunoconjugates/analysis , Immunoconjugates/chemistry , Mass Spectrometry , Biotransformation , Chromatography, Reverse-Phase , Immunoconjugates/isolation & purification , Mass Spectrometry/methods
7.
Bioconjug Chem ; 30(5): 1356-1370, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30966735

ABSTRACT

This work discloses the first examples of antibody-drug conjugates (ADCs) that are constructed from linker-drugs bearing dimeric seco-CBI payloads (duocarmycin analogs). Several homogeneous, CD22-targeting THIOMAB antibody-drug conjugates (TDCs) containing the dimeric seco-CBI entities are shown to be highly efficacious in the WSU-DLCL2 and BJAB mouse xenograft models. Surprisingly, the seco-CBI-containing conjugates are also observed to undergo significant biotransformation in vivo in mice, rats, and monkeys and thereby form 1:1 adducts with the Alpha-1-Microglobulin (A1M) plasma protein from these species. Variation of both the payload mAb attachment site and length of the linker-drug is shown to alter the rates of adduct formation. Subsequent experiments demonstrated that adduct formation attenuates the in vitro antiproliferation activity of the affected seco-CBI-dimer TDCs, but does not significantly impact the in vivo efficacy of the conjugates. In vitro assays employing phosphatase-treated whole blood suggest that A1M adduct formation is likely to occur if the seco-CBI-dimer TDCs are administered to humans. Importantly, protein adduct formation leads to the underestimation of total antibody (Tab) concentrations using an ELISA assay but does not affect Tab values determined via an orthogonal LC-MS/MS method. Several recommendations regarding bioanalysis of future in vivo studies involving related seco-CBI-containing ADCs are provided based on these collective findings.


Subject(s)
Alpha-Globulins/chemistry , Antineoplastic Agents/pharmacology , Immunoconjugates/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dimerization , Haplorhini , Humans , Immunoconjugates/chemistry , Mice , Rats , Xenograft Model Antitumor Assays
8.
MAbs ; 10(8): 1312-1321, 2018.
Article in English | MEDLINE | ID: mdl-30183491

ABSTRACT

Few treatment options are available for acute myeloid leukemia (AML) patients. DCLL9718A is an antibody-drug conjugate that targets C-type lectin-like molecule-1 (CLL-1). This receptor is prevalent on monocytes, neutrophils, and AML blast cells, and unlike CD33, is not expressed on hematopoietic stem cells, thus providing possible hematopoietic recovery. DCLL9718A comprises an anti-CLL-1 IgG1 antibody (MCLL0517A) linked to a pyrrolobenzodiazepine (PBD) dimer payload, via a cleavable disulfide-labile linker. Here, we characterize the in vitro and in vivo stability, the pharmacokinetics (PK) and pharmacodynamics (PD) of DCLL9718A and MCLL0517A in rodents and cynomolgus monkeys. Three key PK analytes were measured in these studies: total antibody, antibody-conjugated PBD dimer and unconjugated PBD dimer. In vitro, DCLL9718A, was stable with most (> 80%) of the PBD dimer payload remaining conjugated to the antibody over 96 hours. This was recapitulated in vivo with antibody-conjugated PBD dimer clearance estimates similar to DCLL9718A total antibody clearance. Both DCLL9718A and MCLL0517A showed linear PK in the non-binding rodent species, and non-linear PK in cynomolgus monkeys, a binding species. The PK data indicated minimal impact of conjugation on the disposition of DCLL9718A total antibody. Finally, in cynomolgus monkey, MCLL0517A showed target engagement at all doses tested (0.5 and 20 mg/kg) as measured by receptor occupancy, and DCLL9718A (at doses of 0.05, 0.1 and 0.2 mg/kg) showed strong PD activity as evidenced by notable reduction in monocytes and neutrophils.


Subject(s)
Immunoconjugates/pharmacokinetics , Immunoconjugates/therapeutic use , Leukemia, Myeloid/drug therapy , Leukemia, Myeloid/metabolism , Acute Disease , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Area Under Curve , Benzodiazepines/immunology , Benzodiazepines/therapeutic use , Humans , Immunoconjugates/immunology , Immunoglobulin G/immunology , Immunoglobulin G/therapeutic use , Lectins, C-Type/immunology , Leukemia, Myeloid/blood , Macaca fascicularis , Metabolic Clearance Rate , Mice , Pyrroles/immunology , Pyrroles/therapeutic use , Rats , Receptors, Mitogen/immunology , Species Specificity
9.
MAbs ; 10(7): 960-967, 2018 10.
Article in English | MEDLINE | ID: mdl-29958059

ABSTRACT

Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate (ADC) designed for the treatment of HER2-positive cancers. T-DM1 is composed of the humanized monoclonal antibody trastuzumab connected to a maytansine derivative cytotoxic drug, via a nonreducible thioether linker at random lysine residues, and therefore has a very complex molecular structure. It was anticipated that T-DM1 undergoes biotransformations in circulation. However, there was limited knowledge on these structural changes due to bioanalytical challenges. Here, we have investigated the in vivo biotransformations of T-DM1 using a high-resolution accurate-mass (HR/AM) mass spectrometry approach. Three types of biotransformations were characterized for T-DM1 in circulation in tumor-bearing mice, including cysteine or glutathione adduct formation via maleimide exchange, loss of maytansinol via ester hydrolysis, as well as addition of H2O via linker-drug hydrolysis. These results provide new insights into in vivo catabolism of T-DM1.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Breast Neoplasms/drug therapy , Mass Spectrometry/methods , Maytansine/analogs & derivatives , Stomach Neoplasms/drug therapy , Trastuzumab/pharmacokinetics , Ado-Trastuzumab Emtansine , Animals , Antineoplastic Agents/therapeutic use , Biotransformation , Female , Humans , Maytansine/pharmacokinetics , Maytansine/therapeutic use , Mice , Mice, SCID , Molecular Structure , Receptor, ErbB-2/metabolism , Trastuzumab/therapeutic use , Xenograft Model Antitumor Assays
10.
Chemistry ; 24(19): 4830-4834, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29493023

ABSTRACT

A novel strategy to attach indole-containing payloads to antibodies through a carbamate moiety and a self-immolating, disulfide-based linker is described. This new strategy was employed to connect a selective estrogen receptor down-regulator (SERD) to various antibodies in a site-selective manner. The resulting conjugates displayed potent, antigen-dependent down-regulation of estrogen receptor levels in MCF7-neo/HER2 and MCF7-hB7H4 cells. They also exhibited similar antigen-dependent modulation of the estrogen receptor in tumors when administered intravenously to mice bearing MCF7-neo/HER2 tumor xenografts. The indole-carbamate moiety present in the new linker was stable in whole blood from various species and also exhibited good in vivo stability properties in mice.


Subject(s)
Indoles/chemistry , Animals , Antibodies, Monoclonal/chemistry , Cell Line, Tumor , Humans , Immunoconjugates/administration & dosage , MCF-7 Cells , Mice
11.
Bioconjug Chem ; 29(4): 1155-1167, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29481745

ABSTRACT

Previous investigations on antibody-drug conjugate (ADC) stability have focused on drug release by linker-deconjugation due to the relatively stable payloads such as maytansines. Recent development of ADCs has been focused on exploring technologies to produce homogeneous ADCs and new classes of payloads to expand the mechanisms of action of the delivered drugs. Certain new ADC payloads could undergo metabolism in circulation while attached to antibodies and thus affect ADC stability, pharmacokinetics, and efficacy and toxicity profiles. Herein, we investigate payload stability specifically and seek general guidelines to address payload metabolism and therefore increase the overall ADC stability. Investigation was performed on various payloads with different functionalities (e.g., PNU-159682 analog, tubulysin, cryptophycin, and taxoid) using different conjugation sites (HC-A118C, LC-K149C, and HC-A140C) on THIOMAB antibodies. We were able to reduce metabolism and inactivation of a broad range of payloads of THIOMAB antibody-drug conjugates by employing optimal conjugation sites (LC-K149C and HC-A140C). Additionally, further payload stability was achieved by optimizing the linkers. Coupling relatively stable sites with optimized linkers provided optimal stability and reduction of payloads metabolism in circulation in vivo.


Subject(s)
Antibodies/chemistry , Immunoconjugates/chemistry , Immunologic Factors/chemistry , Pharmaceutical Preparations/chemistry , Antigens/immunology , Binding Sites , Drug Stability , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/pharmacokinetics , Immunologic Factors/administration & dosage , Immunologic Factors/pharmacokinetics
12.
Bioconjug Chem ; 28(10): 2538-2548, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28885827

ABSTRACT

The incorporation of cysteines into antibodies by mutagenesis allows for the direct conjugation of small molecules to specific sites on the antibody via disulfide bonds. The stability of the disulfide bond linkage between the small molecule and the antibody is highly dependent on the location of the engineered cysteine in either the heavy chain (HC) or the light chain (LC) of the antibody. Here, we explore the basis for this site-dependent stability. We evaluated the in vivo efficacy and pharmacokinetics of five different cysteine mutants of trastuzumab conjugated to a pyrrolobenzodiazepine (PBD) via disulfide bonds. A significant correlation was observed between disulfide stability and efficacy for the conjugates. We hypothesized that the observed site-dependent stability of the disulfide-linked conjugates could be due to differences in the attachment site cysteine thiol pKa. We measured the cysteine thiol pKa using isothermal titration calorimetry (ITC) and found that the variants with the highest thiol pKa (LC K149C and HC A140C) were found to yield the conjugates with the greatest in vivo stability. Guided by homology modeling, we identified several mutations adjacent to LC K149C that reduced the cysteine thiol pKa and, thus, decreased the in vivo stability of the disulfide-linked PBD conjugated to LC K149C. We also present results suggesting that the high thiol pKa of LC K149C is responsible for the sustained circulation stability of LC K149C TDCs utilizing a maleimide-based linker. Taken together, our results provide evidence that the site-dependent stability of cys-engineered antibody-drug conjugates may be explained by interactions between the engineered cysteine and the local protein environment that serves to modulate the side-chain thiol pKa. The influence of cysteine thiol pKa on stability and efficacy offers a new parameter for the optimization of ADCs that utilize cysteine engineering.


Subject(s)
Cysteine/chemistry , Immunoconjugates/chemistry , Benzodiazepines/chemistry , Drug Stability , Immunoconjugates/genetics , Maleimides/chemistry , Models, Molecular , Mutation , Protein Conformation , Pyrroles/chemistry
13.
J Transl Med ; 15(1): 175, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28810879

ABSTRACT

BACKGROUND: Speckle-type POZ protein (SPOP) is an E3 ubiquitin ligase adaptor protein that functions as a potential tumor suppressor, and SPOP mutations have been identified in ~10% of human prostate cancers. However, it remains unclear if mutant SPOP proteins can be utilized as biomarkers for early detection, diagnosis, prognosis or targeted therapy of prostate cancer. Moreover, the SPOP mutation sites are distributed in a relatively short region with multiple lysine residues, posing significant challenges for bottom-up proteomics analysis of the SPOP mutations. METHODS: To address this issue, PRISM (high-pressure, high-resolution separations coupled with intelligent selection and multiplexing)-SRM (selected reaction monitoring) mass spectrometry assays have been developed for quantifying wild-type SPOP protein and 11 prostate cancer-derived SPOP mutations. RESULTS: Despite inherent limitations due to amino acid sequence constraints, all the PRISM-SRM assays developed using Arg-C digestion showed a linear dynamic range of at least two orders of magnitude, with limits of quantification ranged from 0.1 to 1 fmol/µg of total protein in the cell lysate. Applying these SRM assays to analyze HEK293T cells with and without expression of the three most frequent SPOP mutations in prostate cancer (Y87N, F102C or F133V) led to confident detection of all three SPOP mutations in corresponding positive cell lines but not in the negative cell lines. Expression of the F133V mutation and wild-type SPOP was at much lower levels compared to that of F102C and Y87N mutations; however, at present, it is unknown if this also affects the biological activity of the SPOP protein. CONCLUSIONS: In summary, PRISM-SRM enables multiplexed, isoform-specific detection of mutant SPOP proteins in cell lysates, providing significant potential in biomarker development for prostate cancer.


Subject(s)
Mass Spectrometry/methods , Mutation/genetics , Nuclear Proteins/genetics , Prostatic Neoplasms/genetics , Proteomics/methods , Repressor Proteins/genetics , Amino Acid Sequence , HEK293 Cells , Humans , Limit of Detection , Male , Peptides/chemistry , Peptides/metabolism
14.
Bioconjug Chem ; 28(8): 2086-2098, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28636382

ABSTRACT

Conjugation of small molecule payloads to cysteine residues on proteins via a disulfide bond represents an attractive strategy to generate redox-sensitive bioconjugates, which have value as potential diagnostic reagents or therapeutics. Advancement of such "direct-disulfide" bioconjugates to the clinic necessitates chemical methods to form disulfide connections efficiently, without byproducts. The disulfide connection must also be resistant to premature cleavage by thiols prior to arrival at the targeted tissue. We show here that commonly employed methods to generate direct disulfide-linked bioconjugates are inadequate for addressing these challenges. We describe our efforts to optimize direct-disulfide conjugation chemistry, focusing on the generation of conjugates between cytotoxic payloads and cysteine-engineered antibodies (i.e., THIOMAB antibody-drug conjugates, or TDCs). This work culminates in the development of novel, high-yielding conjugation chemistry for creating direct payload disulfide connections to any of several Cys mutation sites in THIOMAB antibodies or to Cys sites in other biomolecules (e.g., human serum albumin and cell-penetrating peptides). We conclude by demonstrating that hindered direct disulfide TDCs with two methyl groups adjacent to the disulfide, which have heretofore not been described for any bioconjugate, are more stable and more efficacious in mouse tumor xenograft studies than less hindered analogs.


Subject(s)
Cysteine , Disulfides/chemistry , Immunoconjugates/chemistry , Peptides/chemistry , Protein Engineering , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Humans , Immunoconjugates/genetics , Mice
15.
Chem Sci ; 8(1): 366-370, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-28451181

ABSTRACT

Disulfide bonds provide a bioactivatable connection with applications in imaging and therapy. The circulation stability and intracellular release of disulfides are problematically coupled in that increasing stability causes a corresponding decrease in cleavage and payload release. However, an antibody offers the potential for a reversible stabilization. We examined this by attaching a small molecule directly to engineered cysteines in an antibody. At certain sites this unhindered disulfide was stable in circulation yet cellular internalization and antibody catabolism generated a disulfide catabolite that was rapidly reduced. We demonstrated that this stable connection and facile release is applicable to a variety of payloads. The ability to reversibly stabilize a labile functional group with an antibody may offer a way to improve targeted probes and therapeutics.

16.
Anal Chem ; 89(10): 5476-5483, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28429938

ABSTRACT

Antibody-drug conjugates (ADCs) represent a promising class of therapeutics for the targeted delivery of highly potent cytotoxic drugs to tumor cells to improve bioactivity while minimizing side effects. ADCs are composed of both small and large molecules and therefore have complex molecular structures. In vivo biotransformations may further increase the complexity of ADCs, representing a unique challenge for bioanalytical assays. Quadrupole-time-of-flight mass spectrometry (Q-TOF MS) with electrospray ionization has been widely used for characterization of intact ADCs. However, interpretation of ADC biotransformations with small mass changes, for the intact molecule, remains a limitation due to the insufficient mass resolution and accuracy of Q-TOF MS. Here, we have investigated in vivo biotransformations of multiple site-specific THIOMAB antibody-drug conjugates (TDCs), in the intact form, using a high-resolution, accurate-mass (HR/AM) MS approach. Compared with conventional Q-TOF MS, HR/AM Orbitrap MS enabled more comprehensive identification of ADC biotransformations. It was particularly beneficial for characterizing ADC modifications with small mass changes such as partial drug loss and hydrolysis. This strategy has significantly enhanced our capability to elucidate ADC biotransformations and help understand ADC efficacy and safety in vivo.


Subject(s)
Immunoconjugates/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Biotransformation , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Immunoconjugates/blood , Mice , Mice, SCID , Oligopeptides/metabolism , Rats , Rats, Sprague-Dawley
17.
Mol Cancer Ther ; 16(5): 871-878, 2017 05.
Article in English | MEDLINE | ID: mdl-28223423

ABSTRACT

A novel disulfide linker was designed to enable a direct connection between cytotoxic pyrrolobenzodiazepine (PBD) drugs and the cysteine on a targeting antibody for use in antibody-drug conjugates (ADCs). ADCs composed of a cysteine-engineered antibody were armed with a PBD using a self-immolative disulfide linker. Both the chemical linker and the antibody site were optimized for this new bioconjugation strategy to provide a highly stable and efficacious ADC. This novel disulfide ADC was compared with a conjugate containing the same PBD drug, but attached to the antibody via a peptide linker. Both ADCs had similar efficacy in mice bearing human tumor xenografts. Safety studies in rats revealed that the disulfide-linked ADC had a higher MTD than the peptide-linked ADC. Overall, these data suggest that the novel self-immolative disulfide linker represents a valuable way to construct ADCs with equivalent efficacy and improved safety. Mol Cancer Ther; 16(5); 871-8. ©2017 AACR.


Subject(s)
Antibodies/administration & dosage , Benzodiazepines/administration & dosage , Immunoconjugates/administration & dosage , Neoplasms/drug therapy , Pyrroles/administration & dosage , Animals , Antibodies/chemistry , Antibodies/immunology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/immunology , Benzodiazepines/chemistry , Benzodiazepines/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Disulfides/chemistry , Disulfides/immunology , Humans , Immunoconjugates/chemistry , Mice , Neoplasms/immunology , Neoplasms/pathology , Pyrroles/chemistry , Pyrroles/immunology , Xenograft Model Antitumor Assays
18.
Drug Metab Dispos ; 44(9): 1517-23, 2016 09.
Article in English | MEDLINE | ID: mdl-27417182

ABSTRACT

Despite recent technological advances in quantifying antibody drug conjugate (ADC) species, such as total antibody, conjugated antibody, conjugated drug, and payload drug in circulation, the correlation of their exposures with the efficacy of ADC outcomes in vivo remains challenging. Here, the chemical structures and concentrations of intratumor catabolites were investigated to better understand the drivers of ADC in vivo efficacy. Anti-CD22 disulfide-linked pyrrolobenzodiazepine (PBD-dimer) conjugates containing methyl- and cyclobutyl-substituted disulfide linkers exhibited strong efficacy in a WSU-DLCL2 xenograft mouse model, whereas an ADC derived from a cyclopropyl linker was inactive. Total ADC antibody concentrations and drug-to-antibody ratios (DAR) in circulation were similar between the cyclobutyl-containing ADC and the cyclopropyl-containing ADC; however, the former afforded the release of the PBD-dimer payload in the tumor, but the latter only generated a nonimmolating thiol-containing catabolite that did not bind to DNA. These results suggest that intratumor catabolite analysis rather than systemic pharmacokinetic analysis may be used to better explain and predict ADC in vivo efficacy. These are good examples to demonstrate that the chemical nature and concentration of intratumor catabolites depend on the linker type used for drug conjugation, and the potency of the released drug moiety ultimately determines the ADC in vivo efficacy.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacokinetics , Benzodiazepines/pharmacokinetics , Immunoconjugates/pharmacokinetics , Neoplasms/metabolism , Pyrroles/pharmacokinetics , Animals , Antibodies, Monoclonal, Humanized/chemistry , Benzodiazepines/chemistry , Female , Immunoconjugates/chemistry , Mice , Mice, SCID , Pyrroles/chemistry , Xenograft Model Antitumor Assays
19.
Kidney Int ; 89(6): 1244-52, 2016 06.
Article in English | MEDLINE | ID: mdl-27165815

ABSTRACT

The human urinary proteome provides an assessment of kidney injury with specific biomarkers for different kidney injury phenotypes. In an effort to fully map and decipher changes in the urine proteome and peptidome after kidney transplantation, renal allograft biopsy matched urine samples were collected from 396 kidney transplant recipients. Centralized and blinded histology data from paired graft biopsies was used to classify urine samples into diagnostic categories of acute rejection, chronic allograft nephropathy, BK virus nephritis, and stable graft. A total of 245 urine samples were analyzed by liquid chromatography-mass spectrometry using isobaric Tags for Relative and Absolute Quantitation (iTRAQ) reagents. From a group of over 900 proteins identified in transplant injury, a set of 131 peptides were assessed by selected reaction monitoring for their significance in accurately segregating organ injury causation and pathology in an independent cohort of 151 urine samples. Ultimately, a minimal set of 35 proteins were identified for their ability to segregate the 3 major transplant injury clinical groups, comprising the final panel of 11 urinary peptides for acute rejection (93% area under the curve [AUC]), 12 urinary peptides for chronic allograft nephropathy (99% AUC), and 12 urinary peptides for BK virus nephritis (83% AUC). Thus, urinary proteome discovery and targeted validation can identify urine protein panels for rapid and noninvasive differentiation of different causes of kidney transplant injury, without the requirement of an invasive biopsy.


Subject(s)
Allografts/pathology , Graft Rejection/urine , Kidney Transplantation , Kidney/pathology , Nephritis/urine , Adolescent , Adult , BK Virus/isolation & purification , Biomarkers/urine , Biopsy , Child , Chromatography, Liquid , Female , Graft Rejection/diagnosis , Graft Rejection/pathology , Humans , Male , Mass Spectrometry , Nephritis/diagnosis , Nephritis/pathology , Nephritis/virology , Proteomics , Urinalysis/methods , Young Adult
20.
J Transl Med ; 13: 54, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25889691

ABSTRACT

BACKGROUND: The established methods for detecting prostate cancer (CaP) are based on tests using PSA (blood), PCA3 (urine), and AMACR (tissue) as biomarkers in patient samples. The demonstration of ERG oncoprotein overexpression due to gene fusion in CaP has thus provided ERG as an additional biomarker. Based on this, we hypothesized that ERG protein quantification methods can be of use in the diagnosis of prostate cancer. METHODS: An antibody-free assay for ERG3 protein detection was developed based on PRISM (high-pressure high-resolution separations with intelligent selection and multiplexing)-SRM (selected reaction monitoring) mass spectrometry. We utilized TMPRSS2-ERG positive VCaP and TMPRSS2-ERG negative LNCaP cells to simulate three different sample types (cells, tissue, and post-DRE urine sediment). Enzyme-linked immunosorbent assay (ELISA), western blot, NanoString, and qRT-PCR were also used in the analysis of these samples. RESULTS: Recombinant ERG3 protein spiked into LNCaP cell lysates could be detected at levels as low as 20 pg by PRISM-SRM analysis. The sensitivity of the PRISM-SRM assay was approximately 10,000 VCaP cells in a mixed cell population model of VCaP and LNCaP cells. Interestingly, ERG protein could be detected in as few as 600 VCaP cells spiked into female urine. The sensitivity of the in-house ELISA was similar to the PRISM-SRM assay, with detection of 30 pg of purified recombinant ERG3 protein and 10,000 VCaP cells. On the other hand, qRT-PCR exhibited a higher sensitivity, as TMPRSS2-ERG transcripts were detected in as few as 100 VCaP cells, in comparison to NanoString methodologies which detected ERG from 10,000 cells. CONCLUSIONS: Based on this data, we propose that the detection of both ERG transcriptional products with RNA-based assays, as well as protein products of ERG using PRISM-SRM assays, may be of clinical value in developing diagnostic and prognostic assays for prostate cancer given their sensitivity, specificity, and reproducibility.


Subject(s)
Gene Expression Regulation, Neoplastic , Mass Spectrometry/methods , Prostatic Neoplasms/genetics , Real-Time Polymerase Chain Reaction/methods , Trans-Activators/genetics , Amino Acid Sequence , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Female , HEK293 Cells , Humans , Male , Molecular Sequence Data , Peptides/chemistry , Peptides/metabolism , Prostatic Neoplasms/urine , RNA, Messenger , Recombinant Proteins/metabolism , Trans-Activators/metabolism , Trans-Activators/urine , Transcriptional Regulator ERG
SELECTION OF CITATIONS
SEARCH DETAIL
...