Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Obes Surg ; 33(10): 3163-3176, 2023 10.
Article in English | MEDLINE | ID: mdl-37635165

ABSTRACT

BACKGROUND: Current bariatric surgery models primarily utilize mice with obesity, overlooking those with type 2 diabetes (T2DM). These models have limitations in replicating clinical procedures accurately and achieving broad applicability. This study aimed to develop novel mouse models of Roux-en-Y gastric bypass (RYGB) and one anastomosis gastric bypass (OAGB) surgeries specifically designed for T2DM research, utilizing simplified surgical techniques closely resembling clinical procedures. METHODS: Eight-week-old C57/Bl6 mice, except for the Blank-Control group, were induced with T2DM by combining a high-fat diet and streptozotocin injection. RYGB involved creating a 10% gastric pouch, a 4-cm biliopancreatic limb (BL), and a 4-cm Roux limb (RL). Similarly, OAGB maintained a 10% gastric pouch and a 4-cm BL. To assess the efficacy of these models, we measured the body weight and fasting blood glucose (FBG) and conducted intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT), and liver B-ultrasound, as well as a histopathological analysis of multiple organs 12 weeks post-operation. RESULTS: The survival rates in the Blank-Control, T2DM-Sham, T2DM-RYGB, and T2DM-OAGB groups were 100% (6/6), 100% (6/6), 85.7% (6/7), and 100% (6/6), respectively. Both RYGB and OAGB surgeries similarly led to sustained weight loss, reduced the FBG levels, improved the IPGTT and ITT results, and alleviated the histopathological manifestations in multiple organs. CONCLUSION: The innovative mouse models of RYGB and OAGB surgeries effectively improve T2DM. Both surgeries demonstrate comparable efficacy in ameliorating T2DM, even when utilizing a gastric pouch of the same size and the same length of BL in OAGB.


Subject(s)
Abdominal Wall , Bariatric Surgery , Diabetes Mellitus, Type 2 , Gastric Bypass , Obesity, Morbid , Animals , Mice , Diabetes Mellitus, Type 2/surgery , Obesity, Morbid/surgery , Disease Models, Animal
3.
Front Endocrinol (Lausanne) ; 13: 981231, 2022.
Article in English | MEDLINE | ID: mdl-36051384

ABSTRACT

[This corrects the article DOI: 10.3389/fendo.2022.896753.].

4.
Front Endocrinol (Lausanne) ; 13: 896753, 2022.
Article in English | MEDLINE | ID: mdl-35712257

ABSTRACT

Type 2 diabetes (T2D) mellitus is a chronic inflammatory disease characterized with high secretion of tumor necrosis factor (TNF)-α, but the regulatory pathway of TNF-α production in T2D has not been fully elucidated. ASK1-interacting protein 1 (AIP1) is a signaling scaffold protein that modulates several pathways associated with inflammation. In this study, we aimed to investigate the role of AIP1 in T2D development. Our results revealed that AIP1 was downregulated in omental adipose tissue (OAT) of obese patients with T2D compared with that in obese patients. In addition, Pearson's correlation test showed that AIP1 was negatively correlated with the homeostatic model assessment for insulin resistance (HOMA-IR, r = -0.4829) and waist-to-hip ratio (r = -0.2614), which are major clinical indexes of T2D. As revealed by the proteomic analysis, immunohistochemistry, and ELISA, the OAT and the serum of obese patients with T2D presented high inflammatory status. And the increased inflammatory factors TNF-α and C-reactive protein C (CRP) in the serum of obese patients with T2D showed a positive correlation with HOMA-IR (TNF-α, r = 0.4728; CRP, r = 0.5522). Interestingly, AIP1 deficiency in adipocytes facilitated TNF-α secretion and retarded glucose uptake. Mechanistically, AIP1 deletion in human adipocytes activated JNK, p38 MAPK, and ERK1/2 signaling. Furthermore, inhibition of these signaling pathways using specific inhibitors could suppress these signal activation and insulin resistance caused by AIP1 deficiency. In addition, AIP1 and TNF-α expression in the OAT of patients with T2D recovered to normal levels after laparoscopic Roux-en-Y gastric bypass (RYGB) surgery. These findings indicate that AIP1 is negatively correlated with the clinical indexes of T2D. It modulates TNF-α expression in OAT via JNK, p38 MAPK, and ERK1/2 signaling.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , ras GTPase-Activating Proteins , Diabetes Mellitus, Type 2/genetics , Humans , Obesity/complications , Obesity/surgery , Proteomics , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases , ras GTPase-Activating Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL