Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Sci Rep ; 7(1): 17473, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29234101

ABSTRACT

Droughts cause huge losses of society and environment, therefore it is important to study the spatial-temporal pattern of drought. The traditional remote sensing drought indices (AVI, VCI and TCI) only consider the single factor representing the soil moisture (surface temperature or NDVI). The comprehensive remote sensing drought indices (VSWI and TVDI) can estimate the soil moisture more accurately, but they are not suitable for large scale region especially with great elevation variation. In this study, a modified Temperature Vegetation Drought Index (mTVDI) was constructed based on the correction of elevation and dry edge. Compared with the traditional drought indices, mTVDI had a better relationship with soil moisture in all selected months (R = -0.376, -0.406, -0.459, and -0.265, p < 0.05). mTVDI was used to analyze the spatial-temporal patterns of drought in China from 1982 to 2010. The results showed that droughts appeared more frequently in Northwest China and the southwest of Tibet while drought centers of North and Southwest China appeared in Huanghuaihai Plain and Yunnan-Guizhou Plateau respectively. The frequency of drought was increasing as a whole while the frequency of severe drought increased significantly by 4.86% and slight drought increased slowly during 1982 to 2010. The results are useful for the understanding of drought and policy making of climate change.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(8): 2143-7, 2013 Aug.
Article in Chinese | MEDLINE | ID: mdl-24159864

ABSTRACT

The objective of the present paper is to study the influence of water stress on wheat spectrum red edge parameters by using field wheat spectrum data obtained from water stress experiment. Firstly, the authors analyzed the influence of water stress on wheat spectrum reflectance. Then the authors got the wheat red edge position and red edge peak through calculating wheat spectrum first-order differential and analyzed the influence of water stress on wheat red edge parameters. Finally the authors discussed the relationship between red peak and wheat yield. The results showed that the wheat red edge position shows "red shift" at the beginning of the wheat growth period and "blue shift" at the later period of the wheat growth period under the water stress experiment. Also, the red edge peak of the wheat showed that red edge peak increased with the water stress sharpening at the beginning of the wheat growth period, and then the red edge peak reduced with the water stress sharpening. The wheat red edge peak presented positive correlation with the wheat yield before the elongation period, and exhibited negative correlation after that period.


Subject(s)
Biomass , Spectrum Analysis/methods , Stress, Physiological/physiology , Triticum/physiology , Water/physiology , Droughts , Spectrum Analysis/instrumentation , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL