Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Mater Chem B ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38919138

ABSTRACT

The clinical application of photodynamic therapy (PDT) has some limitations including poor tumor targeting properties, a high reductive tumor microenvironment, and inefficient activation of single cell death machinery. We herein report pH-sensitive polymeric nanomodulators (NBS-PDMC NPs) for ferroptosis-enhanced photodynamic therapy. NBS-PDMC NPs were constructed using a positively charged type-I photosensitizer (NBS) coordinated with a demethylcantharidin (DMC)-decorated block copolymer via electrostatic interactions. NBS-PDMC NPs had a negative surface charge, which ensures their high stability in bloodstream circulation, while exposure to lysosomal acidic environments reverses their surface charge to positive for tumor penetration and the release of DMC and NBS. Under NIR light irradiation, NBS generated ROS to induce cell damage; in the meantime, DMC inhibited the expression of the GPX4 protein in tumor cells and promoted ferroptosis of tumor cells. This polymer design concept provides some novel insights into smart drug delivery and combinational action to amplify the antitumor effect.

2.
ACS Nano ; 18(8): 6359-6372, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38363638

ABSTRACT

On-demand droplet transportation is of great significance for numerous applications. Although various strategies have been developed for droplet transportation, out-of-surface three-dimensional (3D) transportation of droplets remains challenging. Here, a versatile droplet transportation strategy based on magnetic-actuated jumping (MAJ) of droplets on superhydrophobic grooved surfaces (SHGSs) is presented, which enables 3D, remote, and precise manipulation of droplets even in enclosed narrow spaces. To trigger MAJ, an electromagnetic field is utilized to deform the droplet on the SHGS with the aid of an attached magnetic particle, thereby the droplet acquires excess surface energy. When the electromagnetic field is quickly removed, the excess surface energy is partly converted into kinetic energy, allowing the droplet to jump atop the surface. Through high-speed imaging and numerical simulation, the working mechanism and size matching effect of MAJ are unveiled. It is found that the MAJ behavior can only be observed if the sizes of the droplets and the superhydrophobic grooves are matched, otherwise unwanted entrapment or pinch-off effects would lead to failure of MAJ. A regime diagram which serves as a guideline to design SHGSs for MAJ is proposed. The droplet transportation capacities of MAJ, including in-surface and out-of-surface directional transportation, climbing stairs, and crossing obstacles, are also demonstrated. With the ability to remotely manipulate droplets in enclosed narrow spaces without using any mechanical moving parts, MAJ can be used to design miniaturized fluidic platforms, which exhibit great potential for applications in bioassays, microfluidics, droplet-based switches, and microreactions.

3.
ACS Appl Bio Mater ; 7(2): 1115-1124, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38194480

ABSTRACT

Monoamine oxidase A (MAO-A) is a dimeric flavoprotein that is found in the mitochondrial membrane. Currently, there is a lack of near-infrared fluorescent probes (NIR-FPs) with good specificity and high sensitivity for detecting MAO-A, making it difficult to accurately recognize and image cells in vitro and in vivo. In this study, the NIR-FP DDM-NH2 was designed and synthesized in order to detect MAO-A specifically in live biological systems. The probe comprised two functional components: dicyanoisophosphone as an NIR dye precursor and alanine as a recognition moiety. After identifying MAO-A, the probe exhibited an NIR emission peak at 770 nm with a significant Stokes shift (180 nm), 11-fold response factor, low detection limit of 99.7 nM, and considerably higher affinity toward MAO-A than that toward MAO-B, indicating high sensitivity. In addition, DDM-NH2 was effective when applied to the image-based assessment of MAO-A activity in HeLa cells, zebrafish, and tumor-bearing mice, demonstrating great potential for visualization-based research and MAO-A application in vivo.


Subject(s)
Monoamine Oxidase , Zebrafish , Humans , Mice , Animals , HeLa Cells , Fluorescence , Fluorescent Dyes
4.
Angew Chem Int Ed Engl ; 63(10): e202317943, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38078895

ABSTRACT

Metal-based drugs currently dominate the field of chemotherapeutic agents; however, achieving the controlled activation of metal prodrugs remains a substantial challenge. Here, we propose a universal strategy for the radiation-triggered activation of metal prodrugs via nanosurface energy transfer (NSET). The core-shell nanoplatform (Ru-GNC) is composed of gold nanoclusters (GNC) and ruthenium (Ru)-containing organic-inorganic hybrid coatings. Upon X-ray irradiation, chemotherapeutic Ru (II) complexes were released in a controlled manner through a unique NSET process involving the transfer of photoelectron energy from the radiation-excited Ru-GNCs to the Ru-containing hybrid layer. In contrast to the traditional radiation-triggered activation of prodrugs, such an NSET-based system ensures that the reactive species in the tumor microenvironment are present in sufficient quantity and are not easily quenched. Additionally, ultrasmall Ru-GNCs preferably target mitochondria and profoundly disrupt the respiratory chain upon irradiation, leading to radiosensitization by generating abundant reactive oxygen species. Consequently, Ru-GNC-directed radiochemotherapy induces immunogenic cell death, resulting in significant therapeutic outcomes when combined with the programmed cell death-ligand 1 (PD-L1) checkpoint blockade. This NSET strategy represents a breakthrough in designing radiation-triggered nanoplatforms for metal-prodrug-mediated cancer treatment in an efficient and controllable manner.


Subject(s)
Prodrugs , Prodrugs/pharmacology , Energy Transfer , Reactive Oxygen Species , Immunotherapy , Cell Line, Tumor
5.
Chembiochem ; 24(24): e202300606, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37837285

ABSTRACT

The development of light-triggered ruthenium (Ru) nanophotocages has revolutionized conventional methods of drug administration, thereby facilitating cancer therapy in a noninvasive and temperate manner. Ru nanophotocages employ a distinct approach known as photoactivated chemotherapy (PACT), wherein light-induced ligand dissociation yields a toxic metal complex or a ligand capable of performing other functions such as optically controlled protein degradation and drug delivery. Simultaneously, this process is accompanied by the generation of reactive oxygen species (ROS), which serve as an effective anticancer agent in combination with PACT and photodynamic therapy (PDT). Due to its exceptional attributes of extended tissue penetration, and minimized tissue damage, red light or near-infrared light is widely acknowledged as the "phototherapeutic window" (650-900 nm). In this Concept, we present an overview of the most recent advancements in Ru nanophotocages within the phototherapeutic range. Diverse aspects, including design principles, photocaging efficacy, photoactivation mechanisms, and potential applications in the field of biomedical chemistry, are discussed. Questions and challenges regarding their synthesis, characterization, and applications are also discussed. This Concept would foster further exploration into the realm of Ru nanophotocages.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Photochemotherapy , Ruthenium , Ruthenium/chemistry , Ligands , Coordination Complexes/chemistry , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/chemistry
6.
Angew Chem Int Ed Engl ; 62(44): e202308761, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37496129

ABSTRACT

Enzymatic reactions can consume endogenous nutrients of tumors and produce cytotoxic species and are therefore promising tools for treating malignant tumors. Inspired by nature where enzymes are compartmentalized in membranes to achieve high reaction efficiency and separate biological processes with the environment, we develop liposomal nanoreactors that can perform enzymatic cascade reactions in the aqueous nanoconfinement of liposomes. The nanoreactors effectively inhibited tumor growth in vivo by consuming tumor nutrients (glucose and oxygen) and producing highly cytotoxic hydroxyl radicals (⋅OH). Co-compartmentalization of glucose oxidase (GOx) and horseradish peroxidase (HRP) in liposomes could increase local concentration of the intermediate product hydrogen peroxide (H2 O2 ) as well as the acidity due to the generation of gluconic acid by GOx. Both H2 O2 and acidity accelerate the second-step reaction by HRP, hence improving the overall efficiency of the cascade reaction. The biomimetic compartmentalization of enzymatic tandem reactions in biocompatible liposomes provides a promising direction for developing catalytic nanomedicines in antitumor therapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Liposomes , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Glucose Oxidase/pharmacology , Horseradish Peroxidase , Neoplasms/drug therapy , Neoplasms/pathology , Nanotechnology , Hydrogen Peroxide/therapeutic use
7.
RSC Adv ; 13(16): 10636-10641, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37025664

ABSTRACT

Covalent inhibitors of the papain-like protease (PLpro) from SARS-CoV-2 have great potential as antivirals, but their non-specific reactivity with thiols has limited their development. In this report, we performed an 8000 molecule electrophile screen against PLpro and identified an α-chloro amide fragment, termed compound 1, which inhibited SARS-CoV-2 replication in cells, and also had low non-specific reactivity with thiols. Compound 1 covalently reacts with the active site cysteine of PLpro, and had an IC50 of 18 µM for PLpro inhibition. Compound 1 also had low non-specific reactivity with thiols and reacted with glutathione 1-2 orders of magnitude slower than other commonly used electrophilic warheads. Finally, compound 1 had low toxicity in cells and mice and has a molecular weight of only 247 daltons and consequently has great potential for further optimization. Collectively, these results demonstrate that compound 1 is a promising lead fragment for future PLpro drug discovery campaigns.

8.
Angew Chem Int Ed Engl ; 62(24): e202218768, 2023 06 12.
Article in English | MEDLINE | ID: mdl-36890113

ABSTRACT

Conventional photocages only respond to short wavelength light, which is a significant obstacle to developing efficient phototherapy in vivo. The development of photocages activated by near-infrared (NIR) light at wavelengths from 700 to 950 nm is important for in vivo studies but remains challenging. Herein, we describe the synthesis of a photocage based on a ruthenium (Ru) complex with NIR light-triggered photocleavage reaction. The commercial anticancer drug, tetrahydrocurcumin (THC), was coordinated to the RuII center to create the Ru-based photocage that is readily responsive to NIR light at 760 nm. The photocage inherited the anticancer properties of THC. As a proof-of-concept, we further engineered a self-assembled photocage-based nanoparticle system with amphiphilic block copolymers. Upon exposure to NIR light at 760 nm, the Ru complex-based photocages were released from the polymeric nanoparticles and efficiently inhibited tumor proliferation in vivo.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Ruthenium , Humans , Phototherapy , Neoplasms/drug therapy , Polymers/therapeutic use , Nanoparticles/therapeutic use
9.
ACS Appl Mater Interfaces ; 15(1): 2246-2255, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36563296

ABSTRACT

In the current context of sustainable chemistry development and new regulations, aminolysis of cyclic carbonate is one of the most promising routes to nonisocyanate polyurethanes, also called polyhydroxyurethanes (PHU). In this study, a new kind of shape memory PHU vitrimers with outstanding mechanical properties and chemical recyclability is prepared. The monomer employed for aminolysis to form the PHUs is bis(six-membered cyclic carbonate) of 4,4'-biphenol (BCC-BP), which is synthesized by bi(1,3-diol) precursors and CO2. The synthetic strategy, isocyanate-free and employing CO2 as a building block, is environmentally friendly and suits the concept of carbon neutrality. The thermal properties, mechanical properties, and dynamic behaviors of the PHUs are explored. The maximum breaking strength and elongation at break of the resultant PHUs reach 65 MPa and 452%, respectively, exceeding other reported PHU-based materials in combined performance. Such a PHU material can also lift up a load 4700 times heavier than its own weight by a shape recovery process. Finally, the bi(1,3-diol) can be regenerated through the alcoholysis of PHUs to realize chemical recycling. This work provides a feasibility study for a green synthetic approach and for designing a novel PHU material with outstanding properties.

10.
Adv Healthc Mater ; 11(21): e2201986, 2022 11.
Article in English | MEDLINE | ID: mdl-36106722

ABSTRACT

Intracellular oxidative amplification can effectively destroy tumor cells. Additionally, Fe-mediated Fenton reaction often converts cytoplasm H2 O2 to generate extensive hypertoxic hydroxyl radical (• OH), leading to irreversible mitochondrion damage for tumor celleradication, which is widely famous as tumor chemodynamic therapy (CDT). Unfortunately, intracellular overexpressed glutathione (GSH) always efficiently scavenges • OH, resulting in the significantly reduced CDT effect. To overcome this shortcoming and improve the oxidative stress in cytoplasm, Fe3 O4 ultrasmall nanoparticle encapsulated and ICG loaded organo-mesoporous silica nanovehicles (omSN@Fe-ICG) are constructed to perform both photothermal and GSH depletion to enhance the Fenton-like CDT, by realizing intracellular oxidative stress amplification. After this nanoagents are internalized, the tetrasulfide bonds in the dendritic mesoporous framework can be decomposed with GSH to amplify the toxic ROS neration by selectively converting H2 O2 to hydroxyl radicals through the released Fe-based nanogranules. Furthermore, the NIR laser-induced hyperthermia can further improve the Fenton reaction rate that simultaneously destroyed the mitochondria. As a result, the GSH depletion and photothermal assisted CDT can remarkably improve the tumor eradication efficacy.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Silicon Dioxide , Cell Line, Tumor , Glutathione , Nanoparticles/chemistry , Hydrogen Peroxide
11.
BMC Urol ; 22(1): 30, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35255882

ABSTRACT

BACKGROUND: Renal colic is a surgical emergency in pregnancy that is caused by a range of non-obstetric factors and known to occur more frequently during the second and third trimesters. Several studies have reported that up to 70-80% of stones pass spontaneously during pregnancy. There are some patients will not pass their stones and will ultimately require surgical intervention. Through retrospective analysis of the clinical data of 212 pregnant women with renal colic, the predictive factors of pregnant women with renal colic in need of surgical intervention were determined. METHODS: We conducted a retrospective review of 212 pregnant women presenting with renal colic between 1st January 2009 and 31st December 2020. Univariate and multivariate analyses identified a range of predictive variables for surgical intervention. In addition, we used receiver operating characteristic curve analysis to evaluate the predictive power of our model and created a nomogram for clinical application. RESULTS: Of the 212 patients presenting with acute renal colic in pregnancy, 100 patients (47.2%) underwent surgical intervention and 112 patients (52.8%) were treated conservatively. Univariate analysis identified significant differences between the two groups with regards to fever, the duration of pain, white blood cells, C-reactive protein, ureteral stone size, hydronephrosis, and stone location. Multivariate analysis further identified a number of independent predictors for surgical intervention, including fever, a duration of pain ≥ 4 days, a ureteral stone size ≥ 8 mm, and moderate or severe hydronephrosis. CONCLUSIONS: We identified several independent predictors for surgical intervention for renal colic in pregnancy. Fever, a duration of pain ≥ 4 days, a ureteral stone size ≥ 8 mm, and moderate/severe hydronephrosis, play significant roles in predicting surgical intervention. Our nomogram can help to calculate the probability of surgical intervention in a simple and efficient manner. Prospective studies are now required to validate our model.


Subject(s)
Pregnancy Complications/surgery , Renal Colic/surgery , Adult , Female , Humans , Pregnancy , Pregnancy Complications/etiology , Renal Colic/etiology , Retrospective Studies
12.
World J Clin Cases ; 10(3): 802-810, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35127896

ABSTRACT

BACKGROUND: Pregnancy with renal colic may cause pyelonephritis, decreased renal function, systemic infection and even shock in pregnant women, and cause premature birth and other adverse pregnancy outcomes. When surgery is necessary, the relationship between timing of the operation and the outcome of the mother and child are not known. AIM: To investigate the association between time to ureteral stent placement and clinical outcomes of patients with renal colic during pregnancy. METHODS: In this retrospective study, pregnant women with renal colic who underwent surgery were studied. Maternal preoperative acute pyelonephritis (PANP), pregnancy outcome, and length of hospital stay (LOS) were compared between the two groups. RESULTS: 100 patients were included in the analysis, median age was 30 years. Median time to ureteral stent placement was 48 h (interquartile range, 25-96 h), and 32 patients (32%) were diagnosed with PANP. PANP was closely related to hospitalization costs, re-admission to the hospital due to urinary tract infection after surgery and premature delivery. Multivariate analysis found that stone location and time from pain to admission were related to PANP. CONCLUSION: Both early and delayed surgery are safe and effective for the treatment of renal colic during pregnancy. Early surgery may be superior to a delayed procedure due to shorter LOS. For pregnant patients with renal colic, delayed surgery within 48 h is not related to the clinical outcome of the mother and child. However, the time from pain to hospital admission was related to PANP.

13.
Biomacromolecules ; 23(4): 1733-1744, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35107271

ABSTRACT

The lack of selectivity between tumor and healthy cells, along with inefficient reactive oxygen species production in solid tumors, are two major impediments to the development of anticancer Ru complexes. The development of photoinduced combination therapy based on biodegradable polymers that can be light activated in the "therapeutic window" would be beneficial for enhancing the therapeutic efficacy of Ru complexes. Herein, a biodegradable Ru-containing polymer (poly(DCARu)) is developed, in which two different therapeutics (the drug and the Ru complex) are rationally integrated and then conjugated to a diblock copolymer (MPEG-b-PMCC) containing hydrophilic poly(ethylene glycol) and cyano-functionalized polycarbonate with good degradability and biocompatibility. The polymer self-assembles into micelles with high drug loading capacity, which can be efficiently internalized into tumor cells. Red light induces the generation of singlet oxygen and the release of anticancer drug-Ru complex conjugates from poly(DCARu) micelles, hence inhibiting tumor cell growth. Furthermore, the phototherapy of polymer micelles demonstrates remarkable inhibition of tumor growth in vivo. Meanwhile, polymer micelles exhibit good biocompatibility with blood and healthy tissues, which opens up opportunities for multitherapeutic agent delivery and enhanced phototherapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Carriers , Humans , Micelles , Neoplasms/drug therapy , Phototherapy , Polycarboxylate Cement , Polyethylene Glycols/therapeutic use , Polymers
14.
Chem Commun (Camb) ; 58(19): 3166-3169, 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35170593

ABSTRACT

This article reports the synthesis and characterization of a novel self-immolative linker, based on thiocarbonates, which releases a free thiol upon activation via enzymes. We demonstrate that thiocarbonate self-immolative linkers can be used to detect the enzymes penicillin G amidase (PGA) and nitroreductase (NTR) with high sensitivity using absorption spectroscopy. Paired with modern thiol amplification technology, the detection of PGA and NTR were achieved at concentrations of 160 nM and 52 nM respectively. In addition, the PGA probe was shown to be compatible with both biological thiols and enzymes present in cell lysates.


Subject(s)
Nitroreductases/analysis , Penicillin Amidase/analysis , Sulfhydryl Compounds/chemistry , Molecular Structure , Nitroreductases/metabolism , Penicillin Amidase/metabolism , Spectrometry, Fluorescence
15.
Pediatr Res ; 91(6): 1530-1535, 2022 05.
Article in English | MEDLINE | ID: mdl-33980991

ABSTRACT

BACKGROUND: Intrauterine hyperglycemia can harm a fetus's growth and development, and this can be seen in the umbilical cord blood metabolism disorder. However, the metabolites and metabolic mechanisms involved in the condition remain unknown. METHODS: Targeted metabolomics using liquid chromatography and MetaboAnalyst were conducted in this study to explore differences in metabolites and metabolic pathways between individuals with hyperglycemia or well-controlled gestational diabetes mellitus (GDM) and healthy controls. RESULTS: Univariate analysis found that the hyperglycemic and healthy control groups differed in 30 metabolites, while the well-controlled GDM and the healthy control groups differed only in three metabolites-ursodeoxycholic acid, docosahexaenoic acid, and 8,11,14-eicosatrienoic acid. Most of these metabolic variations were negatively associated with neonatal weights. Further research showed that the variations in the metabolites were primarily associated with the metabolic pathways of linoleic acid (LA) and alpha-linolenic acid (ALA). CONCLUSION: Gestational hyperglycemia and well-controlled GDM, which may play a major role by inhibiting the LA and ALA metabolic pathways, have detrimental effects on cord blood metabolism. IMPACT: The main point of this paper is that intrauterine hyperglycemia has a negative effect on cord blood metabolism mainly through the linoleic acid and alpha-linolenic acid metabolic pathways. This is a study to report a new association between well-controlled GDM and cord blood metabolism. This study provides a possible explanation for the association between intrauterine hyperglycemia and neonatal adverse birth outcomes.


Subject(s)
Diabetes, Gestational , Hyperglycemia , Diabetes, Gestational/metabolism , Female , Fetal Blood/metabolism , Humans , Hyperglycemia/metabolism , Infant, Newborn , Linoleic Acid/metabolism , Metabolomics/methods , Pregnancy , alpha-Linolenic Acid/metabolism
16.
Mol Pharm ; 19(1): 67-79, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34931518

ABSTRACT

The development of endosomal disruptive agents is a major challenge in the field of drug delivery and pharmaceutical chemistry. Current endosomal disruptive agents are composed of polymers, peptides, and nanoparticles and have had limited clinical impact. Alternatives to traditional endosomal disruptive agents are therefore greatly needed. In this report, we introduce a new class of low molecular weight endosomal disruptive agents, termed caged surfactants, that selectively disrupt endosomes via reversible PEGylation under acidic endosomal conditions. The caged surfactants have the potential to address several of the limitations hindering the development of current endosomal disruptive agents, such as high toxicity and low excretion, and are amenable to traditional medicinal chemistry approaches for optimization. In this report, we synthesized three generations of caged surfactants and demonstrated that they can enhance the ability of cationic lipids to deliver mRNA into primary cells. We also show that caged surfactants can deliver siRNA into cells when modified with the RNA-binding dye thiazole orange. We anticipate that the caged surfactants will have numerous applications in pharmaceutical chemistry and drug delivery given their versatility.


Subject(s)
Drug Delivery Systems , Nucleic Acids/administration & dosage , Surface-Active Agents/therapeutic use , Drug Delivery Systems/methods , Endosomes/drug effects , Hemolysis/drug effects , Humans , Hydrogen-Ion Concentration , RNA, Messenger/administration & dosage , RNA, Small Interfering/administration & dosage , Structure-Activity Relationship , Surface-Active Agents/administration & dosage , Surface-Active Agents/chemistry
17.
Cell Discov ; 7(1): 122, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34961760

ABSTRACT

Histone lysine crotonylation is a posttranslational modification with demonstrated functions in transcriptional regulation. Here we report the discovery of a new type of histone posttranslational modification, lysine methacrylation (Kmea), corresponding to a structural isomer of crotonyllysine. We validate the identity of this modification using diverse chemical approaches and further confirm the occurrence of this type of histone mark by pan specific and site-specific anti-methacryllysine antibodies. In total, we identify 27 Kmea modified histone sites in HeLa cells using affinity enrichment with a pan Kmea antibody and mass spectrometry. Subsequent biochemical studies show that histone Kmea is a dynamic mark, which is controlled by HAT1 as a methacryltransferase and SIRT2 as a de-methacrylase. Altogether, these investigations uncover a new type of enzyme-catalyzed histone modification and suggest that methacrylyl-CoA generating metabolism is part of a growing number of epigenome-associated metabolic pathways.

18.
Adv Sci (Weinh) ; 8(23): e2103334, 2021 12.
Article in English | MEDLINE | ID: mdl-34664422

ABSTRACT

The synergistic combination of chemotherapy and photodynamic therapy has attracted considerable attention for its enhanced antitumoral effects; however, it remains challenging to successfully delivery photosensitizers and anticancer drugs while minimizing drug leakage at off-target sites. A red-light-activatable metallopolymer, Poly(Ru/PTX), is synthesized for combined chemo-photodynamic therapy. The polymer has a biodegradable backbone that contains a photosensitizer Ru complex and the anticancer drug paclitaxel (PTX) via a singlet oxygen (1 O2 ) cleavable linker. The polymer self-assembles into nanoparticles, which can efficiently accumulate at the tumor sites during blood circulation. The distribution of the therapeutic agents is synchronized because the Ru complex and PTX are covalently conjugate to the polymer, and off-target toxicity during circulation is also mostly avoided. Red light irradiation at the tumor directly cleaves the Ru complex and produces 1 O2 for photodynamic therapy. Sequentially, the generated 1 O2 triggers the breakage of the linker to release the PTX for chemotherapy. Therefore, this novel sequential dual-model release strategy creates a synergistic chemo-photodynamic therapy while minimizing drug leakage. This study offers a new platform to develop smart delivery systems for the on-demand release of therapeutic agents in vivo.

19.
Biomaterials ; 275: 120915, 2021 08.
Article in English | MEDLINE | ID: mdl-34102525

ABSTRACT

Over the past decades, transition metal complexes have been successfully used in anticancer phototherapies. They have shown promising properties in many different areas including photo-induced ligand exchange or release, rich excited state behavior, and versatile biochemical properties. When encorporated into polymeric frameworks and become part of nanostructures, photoresponsive metallopolymer nanoparticles (MPNs) show enhanced water solubility, extended blood circulation and increased tumor-specific accumulation, which greatly improves the tumor therapeutic effects compared to low-molecule-weight metal complexes. In this review, we aim to present the recent development of photoresponsive MPNs as therapeutic nanomedicines. This review will summarize four major areas separately, namely platinum-containing polymers, zinc-containing polymers, iridium-containing polymers and ruthenium-containing polymers. Representative MPNs of each type are discussed in terms of their design strategies, fabrication methods, and working mechanisms. Current challenges and future perspectives in this field are also highlighted.


Subject(s)
Nanoparticles , Neoplasms , Ruthenium , Humans , Neoplasms/drug therapy , Phototherapy , Precision Medicine
20.
PLoS One ; 16(3): e0247673, 2021.
Article in English | MEDLINE | ID: mdl-33647027

ABSTRACT

Infectious endocarditis is a life-threatening disease, and diagnostics are urgently needed to accurately diagnose this disease especially in the case of prosthetic valve endocarditis. We show here that maltohexaose conjugated to indocyanine green (MH-ICG) can detect Staphylococcus aureus (S. aureus) infection in a rat model of infective endocarditis. The affinity of MH-ICG to S. aureus was determined and had a Km and Vmax of 5.4 µM and 3.0 X 10-6 µmol/minutes/108 CFU, respectively. MH-ICG had no detectable toxicity to mammalian cells at concentrations as high as 100 µM. The in vivo efficiency of MH-ICG in rats was evaluated using a right heart endocarditis model, and the accumulation of MH-ICG in the bacterial vegetations was 2.5 ± 0.2 times higher than that in the control left ventricular wall. The biological half-life of MH-ICG in healthy rats was 14.0 ± 1.3 minutes, and approximately 50% of injected MH-ICG was excreted into the feces after 24 hours. These data demonstrate that MH-ICG was internalized by bacteria with high specificity and that MH-ICG specifically accumulated in bacterial vegetations in a rat model of endocarditis. These results demonstrate the potential efficacy of this agent in the detection of infective endocarditis.


Subject(s)
Cardiac Imaging Techniques/methods , Endocarditis, Bacterial/diagnostic imaging , Glycoconjugates/chemistry , Indocyanine Green/chemistry , Oligosaccharides/chemistry , Staphylococcal Infections/diagnostic imaging , Animals , CHO Cells , Cell Survival/drug effects , Coloring Agents/chemistry , Coloring Agents/pharmacokinetics , Cricetulus , Disease Models, Animal , Endocarditis, Bacterial/microbiology , Endocarditis, Bacterial/pathology , Glycoconjugates/pharmacokinetics , Heart Ventricles/diagnostic imaging , Heart Ventricles/microbiology , Heart Ventricles/pathology , Humans , Indocyanine Green/pharmacokinetics , Infrared Rays , Male , Oligosaccharides/pharmacokinetics , Rats , Rats, Sprague-Dawley , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Staphylococcus aureus/growth & development , Staphylococcus aureus/metabolism , Staphylococcus aureus/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...